首页 | 本学科首页   官方微博 | 高级检索  
     


Forces driving the three‐dimensional folding of eukaryotic genomes
Authors:Alvaro Rada‐Iglesias  Frank G Grosveld  Argyris Papantonis
Affiliation:1. Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany;2. CECAD, University of Cologne, Cologne, Germany;3. Department of Cell Biology, Erasmus Medical Center, GE Rotterdam, Netherlands
Abstract:The last decade has radically renewed our understanding of higher order chromatin folding in the eukaryotic nucleus. As a result, most current models are in support of a mostly hierarchical and relatively stable folding of chromosomes dividing chromosomal territories into A‐ (active) and B‐ (inactive) compartments, which are then further partitioned into topologically associating domains (TADs), each of which is made up from multiple loops stabilized mainly by the CTCF and cohesin chromatin‐binding complexes. Nonetheless, the structure‐to‐function relationship of eukaryotic genomes is still not well understood. Here, we focus on recent work highlighting the biophysical and regulatory forces that contribute to the spatial organization of genomes, and we propose that the various conformations that chromatin assumes are not so much the result of a linear hierarchy, but rather of both converging and conflicting dynamic forces that act on it.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号