Abstract: | Replication of the IncB miniplasmid pMU720 is dependent on the expression of repA, the gene encoding replication initiator protein RepA. Binding of a small antisense RNA (RNAI) to its complementary target (stem-loop I [SLI]) in the RepA mRNA prevents the participation of SLI in the formation of a pseudoknot that is an enhancer of translation of this mRNA. Thus, RNAI regulates the frequency of replication of pMU720 by controlling the efficiency of translation of the RepA mRNA. Mutational analysis of the two seven-base complementary sequences involved in formation of the pseudoknot showed that only the five central bases of each were critical for the formation of the pseudoknot. Physical analysis of SLI showed that despite the complete complementarity of its sequence to that of RNAI, the structures of the two molecules are different. The most prominent difference between the two structures is the presence of a 4-base internal loop immediately below the hairpin loop of SLI but not that of RNAI. Closure of this internal loop in SLI resulted in a 40-fold reduction in repA expression and loss of sensitivity of the residual expression to inhibition by RNAI. By contrast, repA expression was largely unaffected by the closure of a lower internal loop whose presence in SLI and RNAI is essential for effective interaction between these two molecules. These results suggest that the interaction of SLI with the distal pseudoknot bases is fundamentally different from the RNAI-SLI binding interaction and that the differences in structure between RNAI and SLI are necessary to allow SLI to be able to efficiently bind RNAI and to participate in pseudoknot formation. |