首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative analysis of the voltage-dependent gating of mouse parotid ClC-2 chloride channel
Authors:de Santiago Jose Antonio  Nehrke Keith  Arreola Jorge
Affiliation:Instituto de Física, Universidad Autonóma de San Luis Potosí, San Luis Potosí, SLP 78290, México.
Abstract:Various ClC-type voltage-gated chloride channel isoforms display a double barrel topology, and their gating mechanisms are thought to be similar. However, we demonstrate in this work that the nearly ubiquitous ClC-2 shows significant differences in gating when compared with ClC-0 and ClC-1. To delineate the gating of ClC-2 in quantitative terms, we have determined the voltage (V(m)) and time dependence of the protopore (P(f)) and common (P(s)) gates that control the opening and closing of the double barrel. mClC-2 was cloned from mouse salivary glands, expressed in HEK 293 cells, and the resulting chloride currents (I(Cl)) were measured using whole cell patch clamp. WT channels had I(Cl) that showed inward rectification and biexponential time course. Time constants of fast and slow components were approximately 10-fold different at negative V(m) and corresponded to P(f) and P(s), respectively. P(f) and P(s) were approximately 1 at -200 mV, while at V(m) > or = 0 mV, P(f) approximately 0 and P(s) approximately 0.6. Hence, P(f) dominated open kinetics at moderately negative V(m), while at very negative V(m) both gates contributed to gating. At V(m) > or = 0 mV, mClC-2 closes by shutting off P(f). Three- and two-state models described the open-to-closed transitions of P(f) and P(s), respectively. To test these models, we mutated conserved residues that had been previously shown to eliminate or alter P(f) or P(s) in other ClC channels. Based on the time and V(m) dependence of the two gates in WT and mutant channels, we constructed a model to explain the gating of mClC-2. In this model the E213 residue contributes to P(f), the dominant regulator of gating, while the C258 residue alters the V(m) dependence of P(f), probably by interacting with residue E213. These data provide a new perspective on ClC-2 gating, suggesting that the protopore gate contributes to both fast and slow gating and that gating relies strongly on the E213 residue.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号