首页 | 本学科首页   官方微博 | 高级检索  
     


Novel carbohydrate binding modules in the surface anchored α‐amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut
Authors:Darrell W. Cockburn  Carolyn Suh  Krizia Perez Medina  Rebecca M. Duvall  Zdzislaw Wawrzak  Bernard Henrissat  Nicole M. Koropatkin
Affiliation:1. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;2. Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA;3. Life Sciences Collaborative Access Team (LS‐CAT), Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, USA;4. Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix‐Marseille University, Marseille, F‐13288, France;5. Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, France;6. Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
Abstract:Gut bacteria recognize accessible glycan substrates within a complex environment. Carbohydrate binding modules (CBMs) of cell surface glycoside hydrolases often drive binding to the target substrate. Eubacterium rectale, an important butyrate‐producing organism in the gut, consumes a limited range of substrates, including starch. Host consumption of resistant starch increases the abundance of E. rectale in the intestine, likely because it successfully captures the products of resistant starch degradation by other bacteria. Here, we demonstrate that the cell wall anchored starch‐degrading α‐amylase, Amy13K of E. rectale harbors five CBMs that all target starch with differing specificities. Intriguingly these CBMs efficiently bind to both regular and high amylose corn starch (a type of resistant starch), but have almost no affinity for potato starch (another type of resistant starch). Removal of these CBMs from Amy13K reduces the activity level of the enzyme toward corn starches by ~40‐fold, down to the level of activity toward potato starch, suggesting that the CBMs facilitate activity on corn starch and allow its utilization in vivo. The specificity of the Amy13K CBMs provides a molecular rationale for why E. rectale is able to only use certain starch types without the aid of other organisms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号