Using viable eggs to accurately determine the demographic and predation potential of Harmonia dimidiata (Coleoptera: Coccinellidae) |
| |
Authors: | D.‐F. Mou C.‐C. Lee C. L. Smith H. Chi |
| |
Affiliation: | 1. Laboratory of Theoretical and Applied Ecology, Department of Entomology, National Chung Hsing University, Taichung, Taiwan, China;2. Georgia Museum of Natural History, University of Georgia, Athens, GA, USA |
| |
Abstract: | Life table parameters and predation rate of the coccinellid predator Harmonia dimidiata F. fed on Aphis gossypii Glover were determined at 25°C using the age‐stage, two‐sex life table. When the total number of eggs were included in our calculations, the intrinsic rate of increase (r), finite rate (λ), net reproductive rate (R0) and mean generation time (T) for H. dimidiata were 0.1354/day, 1.1450/day, 280.8 offspring and 41.6 day, respectively. These values were significantly different, however, only when viable (=hatchable) H. dimidiata eggs were counted (0.0909/day, 1.0952/day, 67.6 offspring and 46.3 day, respectively). The values obtained using all eggs did not realistically reflect the effect of variable hatch rate and true population parameters of H. dimidiata. We therefore excluded unhatched eggs from our data and demonstrated mathematically that in future demographic studies, it should be a standard procedure to exclude all unhatched eggs when analysing hatch rates that vary with maternal age. A mathematical proof was derived in this study to substantiate this. To observe and quantify variations that occur in the predation rate due to the age and stage of the predator, the daily number of A. gossypii consumed by individual H. dimidiata was analysed using the age‐stage, two‐sex life table. The net predation rate of H. dimidiata on A. gossypii was 14 804 aphids. The transformation rate Qp showed that the predator needs to consume an average of 219.1 aphids to produce one viable egg. The finite predation rate of H. dimidiata was 125.7 when only hatchable eggs were included in the analysis. Because the age‐stage, two‐sex life table takes both of the sexes and the variable predation rate occurring among stages into consideration, it becomes possible to use the population projection to quantify and time biological control procedures. |
| |
Keywords: | biological control egg hatch rate population projection predation rate two‐sex life table |
|
|