Abstract: | Synaptotagmins are synaptic vesicle proteins containing two calcium-binding C2 domains which are involved in coupling calcium influx through voltage-gated channels to vesicle fusion and exocytosis of neurotransmitters. The interaction of synaptotagmins with native P/Q-type calcium channels was studied in solubilized synaptosomes from rat cerebellum. Antibodies against synaptotagmins I and II, but not IV co-immunoprecipitated [125I]omega-conotoxin MVIIC-labelled calcium channels. Direct interactions were studied between in vitro-translated [35S]synaptotagmin I and fusion proteins containing cytoplasmic loops of the alpha1A subunit (BI isoform). Gel overlay revealed the association of synaptotagmin I with a single region (residues 780-969) located in the intracellular loop connecting homologous domains II and III. Saturable calcium-independent binding occurred with equilibrium dissociation constants of 70 nM and 340 nM at 4 degrees C and pH 7.4, and association was blocked by addition of excess recombinant synaptotagmin I. Direct synaptotagmin binding to the pore-forming subunit of the P/Q-type channel may optimally locate the calcium-binding sites that initiate exocytosis within a zone of voltage-gated calcium entry. |