Abstract: | A flavodoxin was isolated from iron-sufficient, nitrogen-limited cultures of the photosynthetic bacterium Rhodobacter capsulatus. Its molecular properties, molecular weight, UV-visible absorption spectrum, and amino acid composition suggest that it is similar to the nif-specific flavodoxin, NifF, of Klebsiella pneumoniae. The results of immunoblotting showed that R. capsulatus flavodoxin is nif specific, since it is absent from ammonia-replete cultures and is not synthesized by the mutant strain J61, which lacks a nif-specific regulator (NifR1). Growth of cultures under iron-deficient conditions causes a small amount of flavodoxin to be synthesized under ammonia-replete conditions and increases its synthesis under N2-fixing conditions, suggesting that its synthesis is under a dual system of control with respect to iron and fixed nitrogen availability. Here we show that flavodoxin, when supplemented with catalytic amounts of methyl viologen, is capable of efficiently reducing nitrogenase in an illuminated chloroplast system. Thus, this nif-specific flavodoxin is a potential in vivo electron carrier to nitrogenase; however, its role in the nitrogen fixation process remains to be established. |