Regulation of ergosterol biosynthesis and sterol uptake in a sterol-auxotrophic yeast. |
| |
Authors: | R T Lorenz and L W Parks |
| |
Abstract: | Inhibition of sterol uptake in Saccharomyces cerevisiae sterol auxotroph FY3 (alpha hem1 erg7 ura) by delta-aminolevulinic acid (ALA) is dependent on the ability of the organism to synthesize heme from ALA. Sterol-depleted cells not exposed to ALA or strain PFY3 cells, with a double heme mutation, exposed to ALA did not exhibit inhibition of sterol uptake. Addition of ALA to sterol-depleted FY3 stimulated production of a high endogenous concentration of 2,3-oxidosqualene (25.55 micrograms mg-1 [dry weight]) at 24 h, whereas FY3 not exposed to ALA or PFY3 exposed to ALA did not accumulate 2,3-oxidosqualene. The high concentration of 2,3-oxidosqualene in FY3 with ALA decreased, and 2,3;22,23-dioxidosqualene increased to a very high level. The elevation of 2,3-oxidosqualene by ALA was correlated with a fivefold increase in the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (EC 1.1.1.34). The enhanced activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase was prevented by cycloheximide but not chloramphenicol and was dependent on a fermentative energy source. Inhibition of sterol uptake could not be attributed to 2,3-oxidosqualene or 2,3;22,23-dioxidosqualene but was due to a nonsaturating level of ergosterol produced as a consequence of heme competency through a leaky erg7 mutation. |
| |
Keywords: | |
|
|