植物生态学报 ›› 2013, Vol. 37 ›› Issue (9): 839-850.DOI: 10.3724/SP.J.1258.2013.00088
收稿日期:
2013-04-03
接受日期:
2013-07-31
出版日期:
2013-04-03
发布日期:
2013-09-02
通讯作者:
吕新
作者简介:
*E-mail: lxshz@126.com基金资助:
LU Jia-Hui1,2,4, L Xin1,*(), LIANG Yong-Chao3, LIN Hai-Rong1
Received:
2013-04-03
Accepted:
2013-07-31
Online:
2013-04-03
Published:
2013-09-02
Contact:
L Xin
摘要:
以盐碱荒漠草甸药用植物胀果甘草(Glycyrrhiza inflata)为材料, 采用水培法研究了盐处理(50、100、200、300 mmol·L-1NaCl) 28天后幼苗株高、生物量、含水量、根粗、甘草酸含量和不同器官的离子含量及离子的选择吸收、运输能力, 并对丙二醛、脯氨酸含量进行测定, 以确定其耐盐范围及耐盐方式。结果表明, 低盐浓度对胀果甘草幼苗生长无显著影响, 只有较高盐浓度(≥200 mmol·L-1 NaCl)使幼苗总生物量、株高、甘草酸含量显著降低; 根据耐盐系数与盐浓度的拟合方程, 确定适宜幼苗生长的盐浓度范围为0-278.17 mmol·L-1。随盐浓度上升, 植株选择性吸收K+、Ca2+、Mg2+, 而抑制Na+进入体内, 幼苗对进入植株体内的Na+在不同盐浓度下采取了不同的分配策略, 低盐浓度下(0-100 mmol·L-1), 植株体内Na+主要积累在根中, 避免了叶中Na+的过多积累, 其盐适应机制以耐盐方式为主; 高盐浓度下(≥200 mmol·L-1 NaCl), Na+主要积累在下部叶, 并通过叶片脱落的方式带走体内的盐分, 其盐适应机制以避盐方式为主。盐胁迫下, 幼苗能促进K+而抑制Na+向上部叶的运输, 使上部叶拒Na喜K, 维持了较高的K+/Na+比值, 有利于幼苗生长; 同时, 地下根系能通过积累Ca2+、Mg2+和合成脯氨酸、甘草酸, 以提高渗透调节能力, 缓解Na+毒害, 使根的生长不受影响, 有利于保证幼苗在盐环境中吸收维持生长的必要养分, 这是胀果甘草幼苗具有较强耐盐性的原因。以上结果说明, 胀果甘草幼苗通过对盐离子的吸收和运输调控、离子区域化和渗透调节, 以耐盐和避盐两种方式适应盐碱荒漠环境。
陆嘉惠, 吕新, 梁永超, 林海荣. 新疆胀果甘草幼苗耐盐性及对NaCl胁迫的离子响应. 植物生态学报, 2013, 37(9): 839-850. DOI: 10.3724/SP.J.1258.2013.00088
LU Jia-Hui, L Xin, LIANG Yong-Chao, LIN Hai-Rong. Salt tolerance of Glycyrrhiza inflata seedlings in Xinjiang and its ion response to salt stress. Chinese Journal of Plant Ecology, 2013, 37(9): 839-850. DOI: 10.3724/SP.J.1258.2013.00088
图1 盐胁迫下胀果甘草幼苗总生物量(A)、株高(B)和根直径变化(C) (平均值±标准误差, n = 4)。不同字母表示差异显著(p < 0.05)。
Fig. 1 Changes of total biomass (A), shoot length (B) and root diameter (C) of Glycyrrhiza inflata seedling under NaCl stress (mean ± SE, n = 4). Different letters indicate significant difference (p < 0.05).
图2 盐胁迫下胀果甘草幼苗不同器官生物量(A, B, C)和含水量(D, E, F)的变化(平均值±标准误差, n = 4)。不同字母表示差异显著(p < 0.05)。
Fig. 2 Changes of biomass (A, B, C) and water content (D, E, F) in different organs of Glycyrrhiza inflata seedling under NaCl stress (mean ± SE, n = 4). Different letters indicate significant difference (p < 0.05).
图3 盐胁迫下胀果甘草幼苗不同器官的甘草酸(A)、脯氨酸(B)、丙二醛(MDA) (C)含量(平均值±标准误差, n = 4)。同一器官不同字母表示差异显著(p < 0.05)。
Fig. 3 Contents of glycyrrhizic acid (A), proline (B) and malonaldehyde (MDA) content (C) in different organs of Glycyrrhiza inflata seedling under NaCl stress (mean ± SE, n = 4). Different letters for each organ indicate significant difference (p < 0.05).
图4 盐胁迫下胀果甘草幼苗不同营养器官Na+ (A)、K+ (B)、Ca2+ (C)、Mg2+ (D)含量变化(平均值±标准误差, n = 4)。同一器官不同字母表示差异显著(p < 0.05)。
Fig. 4 Contents of Na+(A), K+(B), Ca2+(C) and Mg2+(D) content in different organs of Glycyrrhiza inflata seedling under NaCl stress (mean ± SE, n = 4). Different letters for each organ indicate significant difference (p < 0.05).
图5 盐胁迫下胀果甘草幼苗对矿质离子的选择吸收(A)和根(B)、茎(C)运输系数(平均值±标准误差, n = 4)。同一离子不同字母表示差异显著(p < 0.05)。
Fig. 5 Selective uptake (A) and transportation of ion of root (B) and stem (C) of Glycyrrhiza inflata seedling under NaCl stress (mean ± SE, n = 4). Different letters for each ion indicate significant difference (p < 0.05).
NaCl (mmol·L-1) | 根 Root | 茎 Stem | 下部叶 Lower leaf | 上部叶 Upper leaf |
---|---|---|---|---|
0 | 58.01 ± 5.98 a | 214.96 ± 11.27 a | 215.98 ± 21.90 a | 317.13 ± 19.02 a |
50 | 0.84 ± 0.01 b | 1.97 ± 0.10 b | 3.66 ± 0.12 b | 6.46 ± 0.85 b |
100 | 0.48 ± 0.02 b | 1.54 ± 0.01 b | 3.90 ± 0.60 b | 5.18 ± 0.51 b |
200 | 0.40 ± 0.03 b | 0.96 ± 0.26 b | 0.88 ± 0.02 b | 3.10 ± 0.11 b |
300 | 0.34 ± 0.03 b | 0.95 ± 0.17 b | 1.18 ± 0.16 b | 2.05 ± 0.58 b |
表1 盐胁迫下胀果甘草幼苗不同器官的K+/Na+ (平均值±标准误差, n = 4)。
Table 1 K+/Na+ ratio in different organs of Glycyrrhiza inflata seedling under NaCl stress (mean ± SE, n = 4)
NaCl (mmol·L-1) | 根 Root | 茎 Stem | 下部叶 Lower leaf | 上部叶 Upper leaf |
---|---|---|---|---|
0 | 58.01 ± 5.98 a | 214.96 ± 11.27 a | 215.98 ± 21.90 a | 317.13 ± 19.02 a |
50 | 0.84 ± 0.01 b | 1.97 ± 0.10 b | 3.66 ± 0.12 b | 6.46 ± 0.85 b |
100 | 0.48 ± 0.02 b | 1.54 ± 0.01 b | 3.90 ± 0.60 b | 5.18 ± 0.51 b |
200 | 0.40 ± 0.03 b | 0.96 ± 0.26 b | 0.88 ± 0.02 b | 3.10 ± 0.11 b |
300 | 0.34 ± 0.03 b | 0.95 ± 0.17 b | 1.18 ± 0.16 b | 2.05 ± 0.58 b |
[1] |
Alshammary SF, Qian YL, Wallner SJ (2004). Growth response of four turfgrass species to salinity. Agricultural Water Management, 66, 97-111.
DOI URL |
[2] |
Barto EK, Cipollini D (2005). Testing the optimal defense theory and the growth differentiation balance hypothesis in Arabidopsis thaliana. Oecologia, 146, 169-178.
DOI URL |
[3] |
Bavei V, Shiran B, Arzani A (2011). Evaluation of salinity tolerance in sorghum (Sorghum bicolor L.) using ion accumulation, proline and peroxidase criteria. Plant Growth Regulation, 64, 275-285.
DOI URL |
[4] | Chen HZ, Ladatko N, Zhu DF, Lin XQ, Zhang YP, Sun ZX (2007). Absorption and distribution of Na+ and K+in rice seedling under salt stress. Journal of Plant Ecology (Chinese Version), 31, 937-945. (in Chinese with English abstract) |
[陈惠哲, Ladatko N, 朱德峰, 林贤青, 张玉屏, 孙宗修 (2007). 盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究. 植物生态学报, 31, 937-945.] | |
[5] |
Chen WC, Cui PJ, Sun HY, Guo WQ, Yang CW, Jin H, Fang B, Shi DC (2009). Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L. ). Industrial Crops and Products, 30, 351-358.
DOI URL |
[6] |
Debez A, Hamed KB, Grignon C, Abdelly C (2004). Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant and Soil, 262, 179-189.
DOI URL |
[7] |
Fawzia A, Zobayed SMA, Toyoki K (2005). Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system. Plant Physiology and Biochemistry, 43, 1074-1081.
DOI URL PMID |
[8] | Flowers TJ, Yeo AR (1988). Ion relations of salt tolerance. In: Baker DA, Hall JL eds. Solute Transport in Plant Cells and Tissues. June Wiley & Sons, New York. 399-412. |
[9] | Grattan SR, Grieve CM (1999). Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M ed. Handbook of Plant and Crop Stress. Marcel Dekker, New York. 203-229. |
[10] |
Harrathi J, Hosni K, Karray-Bouraoui N, Attia H, Marzouk B, Magne C, Lachaal M (2012). Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.). Acta Physiologiae Plantarum, 34, 129-137.
DOI URL |
[11] |
Huang LQ, Guo LP (2007). Secondary metabolites accumulating and geoherbs formation under environmental stress. China Journal of Chinese Materia Medica, 32, 277-280. (in Chinese with English abstract)
URL PMID |
[黄璐琦, 郭兰萍 (2007). 环境胁迫下次生代谢产物的积累及道地药材的形成. 中国中药杂志, 32, 277-280.]
PMID |
|
[12] | Hutching MJ, de Kroon H (1994). Foraging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159-238. |
[13] | Kao WY, Tsai TT, Tsai HC, Shih CN (2006). Response of three Glycine species to salt stress. Environmental and Experimental Botany, 56, 120-125. |
[14] |
Keutgen AJ, Pawelzik E (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimental Botany, 65, 170-176.
DOI URL |
[15] |
Kopittke PM (2012). Interactions between Ca, Mg, Na and K: alleviation of toxicity in saline solutions. Plant and Soil, 352, 353-362.
DOI URL |
[16] | Kuşvuran S (2012). Ion regulation in different organs of melon (Cucumis melo) genotypes under salt stress. International Journal of Agriculture and Biology, 14, 141-144. |
[17] | Levitt J (1980). Responses of Plants to Environmental Stress 2nd ed. Academic Press, New York. |
[18] |
Li CZ, Wang GX (2004). Interactions between reactive oxygen species, ethylene and polyamines in leaves of Glycyrrhiza inflata seedlings under root osmotic stress. Plant Growth Regulation, 42, 55-60.
DOI URL |
[19] |
Li RL, Shi FC, Fukuda KJ, Yang YL (2010). Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.). Soil Science and Plant Nutrition, 56, 725-733.
DOI URL |
[20] | Li XY, Lu YF, Yan P (1991). Ecological characteristics and community taxonomy of drug licorice in northern China. Journal of Shihezi Agricultural College(Natural Science Edition), 18(3),1-4. (in Chinese with English abstract) |
[李学禹, 陆源芬, 阎平 (1991). 中国西部地区药用甘草的生态学特征及群落分类. 石河子农学院学报(自然科学版), 18(3),1-4.] | |
[21] | Liao JX, Wang GX (2003). The possible role of glycyrrhizic acid in licorice adapt to the desert habitat. Plant Physiology Communications, 39, 367-370. (in Chinese with English abstract) |
[廖建雄, 王根轩 (2003). 甘草酸在甘草适应荒漠生境中的可能作用. 植物生理学通讯, 39, 367-370.] | |
[22] | Mo HB, Yin YL, Lu ZG, Wei XJ, Xu JH (2011). Effects of NaCl stress on the seedling growth and K+and Na+allocation of four leguminous tree species. Chinese Journal of Applied Ecology, 22, 1155-1161. (in Chinese with English abstract) |
[莫海波, 殷云龙, 芦治国, 魏秀君, 徐建华 (2011). NaCl 胁迫对4种豆科树种幼苗生长和K+、Na+含量的影响. 应用生态学报, 22, 1155-1161.] | |
[23] |
Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
DOI URL PMID |
[24] |
Parida AK, Das AB (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349.
DOI URL |
[25] |
Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006). Extracellular Ca2+ ameliorates NaCl-induced K+loss from Arabidopsis root and leaf cells by controlling plasma membrane K+ permeable channels. Plant Physiology, 141, 1653-1665.
DOI URL PMID |
[26] | Shahid MA, Balal RM, Pervez MA, Abbas T, Ashfaq M, Ghazanfar U, Afzal M, Rashid A, Garcia-Sanchez F, Mattson NS (2012). Differential response of pea (Pisum sativum L.) genotypes to salt stress in relation to the growth, physiological attributes antioxidant activity and organic solutes. Australia Journal of Crop Science, 6, 828-838. |
[27] | Shi W, Xu HL, Zhao XF, Ling HB, Li Y (2010). Physiological and biochemical responses to drought stress during seed germination of Glycyrrhiza inflate. Acta Ecologica Sinica, 30, 2112-2117. (in Chinese with English abstract) |
[史薇, 徐海量, 赵新风, 凌红波, 李媛 (2010). 胀果甘草种子萌发对干旱胁迫的生理响应. 生态学报, 30, 2112-2117.] | |
[28] |
Taârit MB, Msaada K, Hosni K, Marzouk B (2011). Physiological changes and essential oil composition of clary sage (Salvia sclarea L.) rosette leaves as affected by salinity. Acta Physiologiae Plantarum, 33, 153-162.
DOI URL |
[29] |
Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011). Additive effects of Na+and Cl - ions on barley growth under salinity stress. Journal of Experimental Botany, 62, 2189-2203.
DOI URL |
[30] |
Teakle N, Snell A, Real D, Barrett-Lennard E, Colmer TD (2010). Variation in salinity tolerance, early shoot mass and shoot ion concentrations within Lotus tenuis: towards a perennial pasture legume for saline land. Crop and Pasture Science, 61, 379-388.
DOI URL |
[31] |
Tester M, Davenport RJ (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503-527.
DOI URL PMID |
[32] | Tian CY, Zhou HF, Liu GQ (2000). The proposal on control of soil salinization and agricultural sustaining development in 21’s century in Xinjiang. Arid Land Geography, 23, 177-181. (in Chinese with English abstract) |
田长彦, 周宏飞, 刘国庆 (2000). 21世纪新疆土壤盐渍化调控与农业持续发展研究建议. 干旱区地理, 23, 177-180.] | |
[33] | Wang BS, Zou Q, Zhao KF (2000). Effect of NaCl stress on ionic contents in different organs of sorghum plants. Acta Agronomica Sinica, 26, 845-849. (in Chinese with English abstract) |
[王宝山, 邹琦, 赵可夫 (2000). NaCl胁迫对高粱不同器官离子含量的影响. 作物学报, 26, 845-849.] | |
[34] |
Wang D, Yuan F, Wang BS, Chen M (2012). Response of plant biofuel hybrid Pennisetum to NaCl stress and its salinity threshold. Chinese Journal of Plant Ecology, 36, 572-577.. (in Chinese with English abstract)
DOI URL |
[王殿, 袁芳, 王宝山, 陈敏 (2012). 能源植物杂交狼尾草对NaCl胁迫的响应及其耐盐阈值. 植物生态学报, 36, 572-577.]
DOI URL |
|
[35] |
Wang GX, Zhang J, Liao JX, Wang JL (2001). Hydropassive evidence and effective factors in stomatal oscillations of Glycyrrhiza inflata under desert conditions. Plant Science, 160, 1007-1013.
DOI URL PMID |
[36] | Wang ZQ, Zhu SQ, Yu RP, Li LQ, Shan GZ, You WR, Zeng XX, Zhang CW, Zhang LJ, Song RH (1993). Chinese Salt-Affected Soils. Science Press, Beijing.1-4. (in Chinese) |
[王遵亲, 祝寿泉, 俞仁培, 黎立群, 单光宗, 尤文瑞, 曾宪修, 张粹雯, 张丽君, 宋荣华 (1993). 中国盐渍土. 科学出版社, 北京.1-4.] | |
[37] |
Yang XY, Zhang WH, Wang QY, Liu YL (2003). Salt tolerance of wild soybeans in Jiangsu and its relation with ionic distribution and selective transportation. Chinese Journal of Applied Ecology, 14, 2237-2240. (in Chinese with English abstract)
URL PMID |
[杨晓英, 章文华, 王庆亚, 刘友良 (2003). 江苏野生大豆的耐盐性和离子在体内的分布及选择性运输. 应用生态学报, 14, 2237-2240.]
PMID |
|
[38] | Zhang JZ, Lu JH, Tian ZP, Liao YH, Li XY (2011). Analysis on characteristics of soil salts in original habitat soil of Glycyrrhiza inflata Bat. Science of Soil and Water Conservation, 9, 82-86. (in Chinese with English abstract) |
[张际昭, 陆嘉惠, 田中平, 廖云海, 李学禹 (2011). 胀果甘草原生境土壤盐分特征分析. 中国水土保持科学, 9, 82-86.] | |
[39] | Zhao KF, Fan H (2005). Halophyte and Its Salt Adaptation Physiology. Science Press, Beijing.30-31, 150. (in Chinese) |
[赵可夫, 范海 (2005). 盐生植物及其对盐渍环境的适应生理. 科学出版社, 北京.30-31, 150.] | |
[40] | Zhao ZH, Cao JG, Fu YJ, Tang ZH, Zu YG (2006). Distribution characteristics of glycyrrhizic acid in wild and cultivated liquorices and their applications. Chinese Bulletin of Botany, 23, 164-168. (in Chinese with English abstract) |
[赵则海, 曹建国, 付玉杰, 唐中华, 祖元刚 (2006). 野生与栽培甘草不同部位甘草酸分布特点及其意义. 植物学通报, 23, 164-168.] | |
[41] | Zheng QS, Liu ZP, Liu YL, Liu L (2004). Effects of iso-osmotic salt and water stresses on growth and ionic distribution in Aloe seedings. Acta Phytoecologica Sinica, 28, 823-827. (in Chinese with English abstract) |
[郑青松, 刘兆普, 刘友良, 刘玲 (2004). 等渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应. 植物生态学报, 28, 823-827.] | |
[42] |
Zhu JK (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441-445.
DOI URL PMID |
[43] |
Zhu JK, Liu JP, Xiong LM (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role potassium nutrition. The Plant Cell, 10, 1181-1191.
DOI URL PMID |
[44] | Zou Q (2005). Experimental Guidance for Plant Physiology. China Agriculture Press , Beijing. (in Chinese) |
[邹琦 (2005). 植物生理学实验指导. 中国农业出版社, 北京.] |
[1] | 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79. |
[2] | 吕晋慧,任磊,李艳锋,王玄,赵夏陆,张春来. 不同基因型茶菊对盐胁迫的响应[J]. 植物生态学报, 2013, 37(7): 656-664. |
[3] | 姜超强, 郑青松, 刘兆普, 徐文君, 李洪燕, 李青. 转AtNHX1基因杨树Tr品系的耐盐性研究[J]. 植物生态学报, 2010, 34(5): 563-570. |
[4] | 陈惠哲, Natalia Ladatko, 朱德峰, 林贤青, 张玉屏, 孙宗修. 盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究[J]. 植物生态学报, 2007, 31(5): 937-945. |
[5] | 闫顺国, 沈禹颖. 生态因子对碱茅种子萌发期耐盐性影响的数量分析[J]. 植物生态学报, 1996, 20(5): 414-422. |
[6] | 武之新, 纪剑勇. 碱地肤耐盐性研究初报[J]. 植物生态学报, 1989, 13(1): 79-83. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3512
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1545
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La