首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of histone acetylation on the solubility, H1 content and DNase I sensitivity of newly assembled chromatin.
Authors:C A Perry and A T Annunziato
Affiliation:Department of Biology, Boston College, Chestnut Hill, MA 02167.
Abstract:In a previous report [Annunziato, A.T. and Seale, R.L. (1983) J. Biol. Chem. 258:12675] a novel intermediate in chromatin assembly was described (detected by labeling new DNA in the presence of the deacetylase inhibitor sodium butyrate), which retained approximately 50% of the heightened sensitivity of newly replicated chromatin to DNaseI. It is now reported that nucleosomes replicated in butyrate are considerably more soluble in the presence of magnesium, relative to chromatin replicated under control conditions, and that this heightened magnesium-solubility is reflected in a concomitant increase in the preferential solubility of nucleosomes containing newly synthesized core histones. This differential solubility was accompanied by a 5- to 6-fold depletion of histone H1, and was completely abolished by the selective removal of H1 from isolated nuclei. The removal of H1 also markedly reduced the preferential DNaseI sensitivity of chromatin replicated in butyrate. Further, when mononucleosomes of control and (acetylated) nascent chromatin were compared, no differences in DNaseI sensitivity were detected. These results provide evidence that the interactions between newly assembled nucleosomes and histone H1 are altered when histone deacetylation is inhibited during chromatin replication, and suggest a mechanism for the control of H1 deposition during nucleosome assembly in vivo.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号