首页 | 本学科首页   官方微博 | 高级检索  
     


Organization of Electron Transport in Photosystem II of Spinach Chloroplasts According to Chelator Inhibition Sites
Authors:Barr R  Crane F L
Affiliation:Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.
Abstract:The organization of electron transport in photosystem II of spinach (Spinacia oleracea) chloroplasts was studied by means of various chelators and uncouplers. The partial reactions used included H2O→methyl viologen, H2O→silicomolybdic acid H2O→ferricyanide, and H2O→dimethylbenzoquinone. Three types of chelator inhibition were found (a) inhibition common to all pathways and presumably affecting the Mn or water oxidation site in photosystem II (salicylaldoxime, dithizone, acridine, 4,4,4-trifluoro-1-(2-thienyl)-1,1-butanedione, 4,4,4-trifluoro-0-(2-furyl)-1,3-butanedione; (b) strong inhibition of the H2O→silicomolybdic acid pathway in presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea by lipophilic chelators (bathocuproine, tertoctylcatechol) but stimulation by orthophenanthroline; and (c) 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone-insensitive dimethylbenzoquinone reduction inhibited by all phenanthrolines while ferricyanide reduction was remarkably stimulated by bathophenanthroline but inhibited by orthophenanthroline and bathocuproine. The action of lipophilic chelators on silicomolybdic acid reduction presumes the presence of a metallo protein in photosystem II. The differential action of bathophenanthroline on dimethylbenzoquinone and ferricyanide reduction indicated the possible existence of a metalloprotein in this pathway which is different from the site of orthophenanthroline inhibition.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号