Amber Mutants of Bacteriophages T3 and T7 Defective in Phage-directed Deoxyribonucleic Acid Synthesis |
| |
Authors: | R. Hausmann and Beatriz Gomez |
| |
Affiliation: | Division of Biology, Southwest Center for Advanced Studies, Dallas, Texas 75230 |
| |
Abstract: | Amber mutants of the related phages T3 and T7 were isolated and tested for their ability to restore-as the wild type does-thymidine incorporation in ultraviolet (UV)-irradiated, UV-sensitive, nonpermissive host bacteria (Escherichia coli B(s-1)). Most amber mutants had this ability. However, in both T3 and T7, mutants unable to promote thymidine incorporation under these conditions were found and classified into two well-defined complementation groups: T3DO-A and T3DO-B, T7DO-A and T7DO-B. Infection of B(s-1) cells with representatives of groups DO-A had the following characteristics: (i) phage-directed uridine uptake in UV-irradiated cells was reduced to less than 20% of normal; (ii) breakdown of host deoxyribonucleic acid (DNA) was delayed and incomplete; (iii) no serum-blocking antigens appeared; (iv) no cell lysis occurred; (v) the ability to exclude the heterologous wild type was impaired. Amber mutants of the DO-B groups, infecting B(s-1), were able to: (i) promote an efficient phage-directed uridine uptake in UV-irradiated cells; (ii) bring about rapid breakdown of host DNA; (iii) synthesize serum-blocking antigens; (iv) lyse the host cells, generally after the normal latent period; (v) exclude efficiently the heterologous wild type. Although physiological similarities between the respective DO-A mutants or DO-B mutants of T3 and T7 were evident, no physiological cross-complementation occurred, and genetic crosses gave no evidence of genetic homologies between groups of T3 and T7. |
| |
Keywords: | |
|
|