Nucleoside conformation is determined by the electronegativity of the sugar substituent. |
| |
Authors: | W Guschlbauer and K Jankowski |
| |
Abstract: | The proton and 13C NMR spectra of uridine, deoxyuridine and four 2' substituted uridines (dUn, dUz, dUcl and dUfl) are reported. A linear relationship between the electronegativity of the 2'-substituent and the carbon-13 chemical shift of C2' is observed. Taking into account the effect of electronegativity by using the correction proposed by Karplus or by Jankowski, the proton-proton coupling constants have been used to compute the conformational equilibria of the six uridines. It is shown that the contribution of the N form (3'-endo -2'-exo) increases with the electronegativity of the 2' substituent. Thus dUfl contains some 85% N form in solution. - Applying similar corrections to published data in the adenosine series, a similar correlation is observed. This observation, that the most polar substituent pulls the pucker to its side, holds also for 3'-substituted compounds, like cordycepin (3'dAdo) and 3'-deoxy-3'-amino-adenosine. It is suggested that the influence of the electronegativity could be the dominating effect of nucleoside conformations and would also hold for arabinosides and xylosides. This effect should therefore also be the principal force which determines the differences between DNA and RNA. |
| |
Keywords: | |
|
|