Abstract: | In the presence of ATP plus two other ribonucleoside triphosphates or in reactions containing all four ribonucleoside triphosphates and actinomycin D, vaccinia virus synthesizes in vitro discrete low-molecular-weight RNA molecules ranging in size from about 20 to several hundred bases. A novel feature of these small RNA molecules is that they are capped and methylated at the 5' terminus, containing both mGpppGm and mGpppAm type cap structures, and in addition these molecules are polyadenylated at the 3' terminus. Hybridization of these RNAs to restriction fragments derived from vaccinia virus DNA indicates a considerable degree of complexity, suggesting the presence of a large number of promoters throughout the genome. However, measurable sensitivity to pancreatic RNase of the 5' capped end of these RNAs while in hybrid form to the DNA suggests other possible roles for these small RNAs in vaccinia virus mRNA biogenesis. |