首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of iron on growth and reflectance spectrum of the bloom‐forming cyanobacterium Microcystis viridis
Authors:Guangyu Chi  Bin Huang  Jian Ma  Yi Shi  Xin Chen
Affiliation:Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
Abstract:Iron is an important factor in algal blooms because it is involved in cyanobacterial pigment biosynthesis and therefore has the ability to influence the pigment status of algal cells. This role in pigment biosynthesis offers the opportunity for rapid monitoring of iron availability to cyanobacteria through spectral reflectance characterization. In the present study, the freshwater cyanobacterium Microcystis viridis was cultured with different levels of iron. Cell density, cellular content of iron and photosynthetic pigments, and spectral reflectivity of M. viridis were determined daily during the course of the culture experiment. The results showed that at the lowest iron concentration (0.01 μM) the growth of M. viridis was seriously limited, and the maximal cell density was only approximately 6.4% of the density observed with an iron concentration of 18 μM. Iron availability dramatically affected chlorophyll a, carotenoid and phycocyanin content, with the greatest impact on chlorophyll a. The iron‐induced changes in content and ratios of pigments were detectable through spectral reflectance. Eleven spectral indices previously developed for the estimation of concentrations and/or ratios of pigments and a newly proposed chlorophyll a/phycocyanin index were found to be suitable for generating sensitive regression models between cellular iron content and spectral parameters. The comprehensive application of key sensitive spectral indices and regression equations should help to support monitoring and diagnosis of iron availability to cyanobacteria via remote sensing.
Keywords:carotenoid  cellular iron  chlorophyll a  phycocyanin  remote sensing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号