Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses |
| |
Authors: | J. G. Prunier M. Colyn X. Legendre K. F. Nimon M. C. Flamand |
| |
Affiliation: | 1. Institut des Sciences de la Vie, Université catholique de Louvain, Louvain‐la‐Neuve, Belgium;2. CNRS‐UMR 6553, Université de Rennes 1, Paimpont, France;3. Muséum National d'Histoire Naturelle (MNHN), DPBZ, Obterre, France;4. Department of Human Resource Development & Technology, University of Texas at Tyler, Tyler, TX, USA |
| |
Abstract: | Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance‐partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. |
| |
Keywords: |
CDPOP
commonality analysis logistic regressions multiple regressions on distance matrices spurious correlations |
|
|