植物生态学报 ›› 2016, Vol. 40 ›› Issue (8): 735-747.DOI: 10.17521/cjpe.2015.0457
所属专题: 全球变化与生态系统; 生态系统结构与功能; 生物多样性
• 研究论文 • 下一篇
出版日期:
2016-08-10
发布日期:
2016-08-23
通讯作者:
高玉葆
基金资助:
Jing-Peng LI, Zhi-Rong ZHENG, Nian-Xi ZHAO, Yu-Bao GAO*()
Online:
2016-08-10
Published:
2016-08-23
Contact:
Yu-Bao GAO
摘要:
随着全球变化对生物多样性的影响不断加剧, 生物多样性与生态系统功能之间相互关系(BEF)的研究显得极为重要。过去的20多年, BEF的研究大多集中在对物种多样性与单一或少数生态系统功能之间关系的探讨, 但生态系统最为重要的价值是同时维持多种服务和功能的能力, 基于此, 该文首次在国内引入近年来不断完善的生态系统多功能性(multifunctionality)的概念, 并对目前主流的评价方法进行了改进, 从而对内蒙古三种利用方式(刈割、围封、放牧)下的草地群落进行了多功能性评价, 并探讨了多功能性与物种多样性之间的关系。结果显示本研究改进的方法和目前主流方法评价得出的多功能性指数在样方和样地尺度上都有很高的相关性(R2 = 0.6956, p < 0.0001; R2 = 0.9231, p < 0.0001), 表明该文作者改进后的方法是可靠的。重度放牧的草地群落物种多样性水平最低, 绝大多数土壤功能指标较差, 表现出退化特征; 7年的围封和刈割群落均有较高的物种多样性水平和改善的土壤功能指标; 三者的多功能性指数为刈割(0.2178) >围封(0.0704) >放牧(-0.8031)。植被样方主要沿水肥梯度分布; 多样性指数中, 均匀度指数(Pielou index)和丰富度指数(Margelf index)对多功能性的影响作用最大, 均为样方尺度(R2 = 0.1871, p < 0.0001; R2 = 0.1601, p < 0.0001)小于样地尺度(R2 = 0.5921, p = 0.0093; R2 = 0.7499, p = 0.0007), 有尺度依赖性; 多功能性在样方和样地尺度上均与物种均匀度呈线性正相关关系, 而与物种丰富度呈单峰曲线关系。该文研究结果表明, 相对于重度放牧和围封, 刈割更有利于维持该地区生态系统的多功能性; 物种丰富度适中且物种分布均匀的生态系统可能有更好的多功能性。
李静鹏, 郑志荣, 赵念席, 高玉葆. 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系. 植物生态学报, 2016, 40(8): 735-747. DOI: 10.17521/cjpe.2015.0457
Jing-Peng LI, Zhi-Rong ZHENG, Nian-Xi ZHAO, Yu-Bao GAO. Relationship between ecosystem multifuntionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology, 2016, 40(8): 735-747. DOI: 10.17521/cjpe.2015.0457
图1 刈割、围封、放牧三种利用方式下草原群落的土壤功能指标(平均值±标准误差)。相同小写字母表示数据间差异不显著。C, 刈割群落; E, 围封群落; G, 放牧群落。AN, 碱解氮; AP, 通气孔隙度; AvP, 速效磷; BD, 土壤容重; BP, 总孔隙度; CEC, 阳离子交换量; CMC, 毛管持水量; CP, 毛管孔隙度; NCP, 非毛管孔隙度; OM, 土壤有机质; SMC, 土壤含水量; TC, 全碳; TN, 全氮; TP, 全磷。
Fig. 1 Soil functional indexes in three communities with treatments of clipping, enclosure and grazing (mean ± SE). Same lowercase letters indicate non-significant difference between different communities. C, clipping community; E, enclosure community; G, grazing community. AN, available N; AP, aeration porosity; AvP, available P; BD, soil bulk density; BP, bulk porosity; CEC, cation exchange capacity; CMC, capillary moisture capacity; CP, capillary porosity; NCP, non-capillary porosity; OM, organic matter; SMC, soil moisture content; TC, Total C; TN, Total N; TP, total P.
样地 Sites | 密度 Density (individuals·m-2) | 丰富度 Richness | 多样性指数 Diversity index | |||
---|---|---|---|---|---|---|
Margalef | Evenness | Shannon-Wiener | Simpson | |||
放牧 Grazing | 195.25 ± 15.31a | 9.05 ± 0.38b | 1.54 ± 0.07b | 0.68 ± 0.02b | 1.48 ± 0.05b | 0.69 ± 0.02b |
刈割 Clipping | 262.80 ± 22.45a | 13.08 ± 0.37a | 2.31 ± 0.11a | 0.83 ± 0.01a | 2.12 ± 0.04a | 0.83 ± 0.01a |
围封 Enclosure | 214.63 ± 16.87a | 12.20 ± 0.40a | 2.13 ± 0.06a | 0.80 ± 0.01a | 1.99 ± 0.04a | 0.81 ± 0.01a |
表1 刈割、围封、放牧三种管理方式下群落的生物多样性指数(平均值±标准误差)
Table 1 Community biodiversity indices under three treatments of clipping, enclosure and grazing (mean ± SE)
样地 Sites | 密度 Density (individuals·m-2) | 丰富度 Richness | 多样性指数 Diversity index | |||
---|---|---|---|---|---|---|
Margalef | Evenness | Shannon-Wiener | Simpson | |||
放牧 Grazing | 195.25 ± 15.31a | 9.05 ± 0.38b | 1.54 ± 0.07b | 0.68 ± 0.02b | 1.48 ± 0.05b | 0.69 ± 0.02b |
刈割 Clipping | 262.80 ± 22.45a | 13.08 ± 0.37a | 2.31 ± 0.11a | 0.83 ± 0.01a | 2.12 ± 0.04a | 0.83 ± 0.01a |
围封 Enclosure | 214.63 ± 16.87a | 12.20 ± 0.40a | 2.13 ± 0.06a | 0.80 ± 0.01a | 1.99 ± 0.04a | 0.81 ± 0.01a |
图2 植物样方与土壤因子的冗余分析。AN, 碱解氮; AP, 通气孔隙度; AvP, 速效磷; BD, 土壤容重; BP, 总孔隙度; CEC, 阳离子交换量; CMC,毛管持水量; CP, 毛管孔隙度; NCP, 非毛管孔隙度; OM, 土壤有机质; SMC, 土壤含水量; TC, 全碳; TN, 全氮; TP, 全磷。
Fig. 2 The effect of soil factors on plant distribution patterns based on Redundance Analysis. AN, available N; AP, aeration porosity; AvP, available P; BD, soil bulk density; BP, bulk porosity; CEC, cation exchange capacity; CMC, capillary moisture capacity; CP, capillary porosity; NCP, non-capillary porosity; OM, organic matter; SMC, soil moisture content; TC, Total C; TN, Total N; TP, total P.
图3 因子特征值、方差贡献率和因子载荷。黑色柱子表示因子载荷>0.6或<-0.6。AN, 碱解氮; AP,通气孔隙度; AvP, 速效磷; BD, 土壤容重; BP, 总孔隙度; CEC, 阳离子交换量; CMC, 毛管持水量; CP, 毛管孔隙度; NCP, 非毛管孔隙度; OM, 土壤有机质; SMC, 土壤含水量; TC, 全碳; TN, 全氮; TP, 全磷。
Fig. 3 The eigenvalues, percent of variance explained and factor loadings. Black bars indicate the factor loadings >0.6 or <-0.6. AN, available N; AP, aeration porosity; AvP, available P; BD, soil bulk density; BP, bulk porosity; CEC, cation exchange capacity; CMC, capillary moisture capacity; CP, capillary porosity; NCP, non-capillary porosity; OM, organic matter; SMC, soil moisture content; TC, total C; TN, total N; TP, total P.
群落 Community | 因子得分 Factor score | 多功能性指数 Multifunctionality index | |||
---|---|---|---|---|---|
因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 | 因子4 Factor 4 | ||
放牧 Grazing | -2.063 9b | 0.453 0a | -0.252 4b | -0.497 5b | -0.803 1 |
刈割 Clipping | 0.384 5a | 0.032 8ab | 0.603 2a | -0.169 8b | 0.217 8 |
围封 Enclosed | 0.347 1a | -0.187 4b | -0.484 9b | 0.332 6a | 0.070 4 |
表2 各群落的因子得分和多功能性指数
Table 2 Factor scores and multifunctionality index in different communities
群落 Community | 因子得分 Factor score | 多功能性指数 Multifunctionality index | |||
---|---|---|---|---|---|
因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 | 因子4 Factor 4 | ||
放牧 Grazing | -2.063 9b | 0.453 0a | -0.252 4b | -0.497 5b | -0.803 1 |
刈割 Clipping | 0.384 5a | 0.032 8ab | 0.603 2a | -0.169 8b | 0.217 8 |
围封 Enclosed | 0.347 1a | -0.187 4b | -0.484 9b | 0.332 6a | 0.070 4 |
图4 样方和样地尺度群落多功能性与均匀度和物种丰富度之间的关系。A、B, 样地尺度。C、D, 样方尺度。图中圆形表示围封样地, 三角形表示刈割样地, 菱形表示放牧样地。
Fig. 4 Relationships between multifunctionality and community evenness and Margalef index at quadrat and sites scale. A, B, site scale. C, D, quadrat scale. Diamonds represent grazing sites, circles represent enclosure sites and triangles represent clipping sites.
图5 样方和样地尺度上两种量化方法得到的多功能性指数。A, 样方尺度。B, 样地尺度。1), 本文方法得出的多功能性指数; 2), Maestre等(2012a, 2012b)对多变量的Z-scores简单平均得出的多功能性指数。菱形代表放牧样地, 圆形代表围封样地, 三角形代表刈割样地。
Fig. 5 Correlations between multifunctionality indexes calculated by two methods at quadrat and site scale. A, quadrat scale. B, site scale. 1), the multifunctionality index calculated by the author’method; 2), the multifunctionality index calculated by the method of Maestre et al. (2012a, 2012b). Diamonds represent grazing sites, circles represent enclosure sites and triangles represent clipping sites.
[1] | Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O'Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu CJ, Cleland EE, Collins SL, Cottingham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Hille Ris Lambers J, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, La Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011). Productivity is a poor predictor of plant species richness. Science, 333, 1750-1753. |
[2] | Bai Y, Wu J, Pan Q, Huang J, Wang Q, Li F, Buyantuyev A, Han X (2007). Positive linear relationship between productivity and diversity: Evidence from the Eurasian Steppe. Journal of Applied Ecology, 44, 1023-1034. |
[3] | Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Emmett Duffy J (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality, challenges and solutions. Methods in Ecology and Evolution, 5, 111-124. |
[4] | Cao CY, Shao JF, Jiang DM, Cui ZB (2011). Effects of fence enclosure on soil nutrients and biological activities in highly degraded grasslands. Journal of Northeastern University (Natural Science), 32, 427-430. (in Chinese with English abstract)[曹成有, 邵建飞, 蒋德明, 崔振波 (2011). 围栏封育对重度退化草地土壤养分和生物活性的影响. 东北大学学报(自然科学版), 32, 427-430.] |
[5] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[6] | Carrera AL, Bertiller MB, Larreguy C (2008). Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina. Plant and Soil, 311, 39-50. |
[7] | Chen FR, Cheng JM, Liu W, Zhu RB, Yang XM, Zhao XY, Su JS (2013). Effects of different disturbances on diversity and biomass of communities in the typical steppe of loess region. Acta Ecologica Sinica, 33, 2856-2866. (in Chinese with English abstract)[陈芙蓉, 程积民, 刘伟, 朱仁斌, 杨晓梅, 赵新宇, 苏纪帅 (2013).不同干扰对黄土区典型草原物种多样性和生物量的影响.生态学报, 33, 2856-2866.] |
[8] | Chen HY, Zhang JH, Huang YM, Gong JR (2014). Traits related to carbon sequestration of common plant species in a Stipa grandis steppe in Nei Mongol under different land-uses. Chinese Journal of Plant Ecology, 38, 821-832. (in Chinese with English abstract)[陈慧颖, 张景慧, 黄永梅, 龚吉蕊 (2014). 内蒙古大针茅草原常见植物在不同土地利用方式下的固碳相关属性. 植物生态学报, 38, 821-832.] |
[9] | Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceição AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romão R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E (2013). Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672-676. |
[10] | Díaz S, Cabido M (2001). Vive la difference: Plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655. |
[11] | Díaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson TM (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104, 20684-20689. |
[12] | Gamfeldt L, Hillebrand H, Jonsson PR (2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231. |
[13] | Grime JP (1997). Biodiversity and ecosystem function: The debate deepens. Science, 277, 1260-1261. |
[14] | Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638. |
[15] | Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190. |
[16] | Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder C, O'Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras A, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999). Plant diversity and productivity experiments in European grasslands. Science, 286, 1123-1127. |
[17] | Hossain MZ, Sugiyama S (2008). Effects of chemical composi- tion on the rate and temporal pattern of decomposition in grassland species leaf litter. Grassland Science, 54, 40-44. |
[18] | Isbell FI, Polley HW, Wilsey BJ (2009). Biodiversity, productivity and the temporal stability of productivity, patterns and processes. Ecology Letters, 12, 443-451. |
[19] | Jiang DM, Miao RH, Toshio OD, Zhou QL (2013). Effects of fence enclosure on vegetation restoration and soil properties in Horqin Sandy Land. Ecology and Environmental Sciences, 22, 40-46. (in Chinese with English abstract)[蒋德明, 苗仁辉, 押田敏雄, 周全来 (2013). 封育对科尔沁沙地植被恢复和土壤特性的影响. 生态环境学报, 22, 40-46.] |
[20] | Kassen R, Buckling A, Bell G, Rainey PB (2000). Diversity peaks at intermediate productivity in a laboratory microcosm. Nature, 406, 508-512. |
[21] | Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE (2015). Biodiversity enhances ecosystem multifunc- tionality across trophic levels and habitats. Nature Communications, 6, 6936. |
[22] | MacDougall AS, McCann KS, Gellner G, Turkington R (2013). Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature, 494, 86-89. |
[23] | Madritch MD, Cardinale BJ (2007). Impacts of tree species diversity on litter decomposition in northern temperate forests of Wisconsin, USA: A multi-site experiment along a latitudinal gradient. Plant and Soil, 292, 147-159. |
[24] | Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012a). Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. Journal of Ecology, 100, 317-330. |
[25] | Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, Garcia-Gomez M, Bowker MA, Soliveres S, Escolar C, Garcia-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceicao AA, Cabrera O, Chaieb M, Derak M, Eldridge DJ, Espinosa CI, Floren- tino A, Gaitan J, Gatica MG, Ghiloufi W, Gomez- Gonzalez S, Gutierrez JR, Hernandez RM, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau RL, Morici E, Naseri K, Ospina A, Polo V, Prina A, Puch- eta E, Ramirez-Collantes DA, Romao R, Tighe M, Torres-Diaz C, Val J, Veiga JP, Wang D, Zaady E (2012b). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218. |
[26] | Niu DC, Jiang SG, Qin Y, Zhang BL, Cao GT, Fu H (2013). Effects of grazing and fencing on soil microorganisms and enzymes activities. Partacultural Science, 30, 528-534. (in Chinese with English abstract)[牛得草, 江世高, 秦燕, 张宝林, 曹格图, 傅华 (2013). 围封与放牧对土壤微生物和酶活性的影响. 草业科学, 30, 528-534.] |
[27] | Partel M, Laanisto L, Zobel M (2007). Contrasting plant productivity-diversity relationships across latitude, the role of evolutionary history. Ecology, 88, 1091-1097. |
[28] | Pei S, Fu H, Wan C (2008). Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agriculture, Ecosystems and Environment, 124, 33-39. |
[29] | Rajaniemi TK (2002). Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. Journal of Ecology, 90, 316-324. |
[30] | Sanderson MA, Skinner RH, Barker DJ, Edwards GR, Tracy BF, Wedin DA (2004). Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Science, 44, 1132-1144. |
[31] | Shi HX, Fan YJ, Hou XY, Yang YP, Wu XH, Yang TT, Li P (2014). Analysis of plant community characteristics of Kobresia pygmaea meadow in the three headwaters under fencing and grazing. Chinese Journal of Grassland, 36(3), 67-72. (in Chinese with English abstract)[石红霄, 范月君, 侯向阳, 杨玉平, 吴新宏, 杨婷婷, 李鹏 (2014). 三江源区围栏与放牧高山嵩草草甸植物群落特征分析. 中国草地学报, 36(3), 67-72.] |
[32] | Simova I, Li YM, Storch D (2013). Relationship between species richness and productivity in plants: The role of sampling effect, heterogeneity and species pool. Journal of Ecology, 101, 161-170. |
[33] | Soliveres S, Maestre FT, Eldridge DJ, Delgado-Baquerizo M, Quero JL, Bowker MA, Gallardo A (2014). Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Global Ecology and Biogeography, 23, 1408-1416. |
[34] | Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and compos- ition on ecosystem processes. Science, 277, 1300-1302. |
[35] | Valencia E, Maestre FT, Le Bagousse-Pinguet Y, Quero JL, Tamme R, Borger L, Garcia-Gomez M, Gross N (2015). Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytologist, 206, 660-71. |
[36] | Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111, 5266-5270. |
[37] | Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999). The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30, 257-300. |
[38] | Walter J, Hein R, Beierkuhnlein C, Hammerl V, Jentsch A, Schädler M, Schuerings J, Kreyling J (2013). Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biology & Biochemistry, 60, 10-18. |
[39] | Wang MJ, Han GD, Zhao ML, Chen HJ, Wang Z, Hao XL, Bo T (2007). The effects of different grazing intensity on soil organic carbon content in meadow steppe. Partacultural Science, 24(10), 6-10. (in Chinese with English abstract)[王明君, 韩国栋, 赵萌莉, 陈海军, 王珍, 郝晓莉, 薄涛 (2007). 草甸草原不同放牧强度对土壤有机碳含量的影响. 草业科学, 24(10), 6-10.] |
[40] | Wang RZ (1998). A study on the effects of grazing and mowing disturbances in Leymus chinensis grassland in Songnen Plain. Acta Ecologica Sinica, 18, 100-103. (in Chinese with English abstract)[王仁忠 (1998). 放牧和刈割干扰对松嫩草原羊草草地影响的研究. 生态学报, 18, 100-103.] |
[41] | Wang W, Liang CZ, Liu ZL, Hao DY (2000). Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community. Acta Phytoecologica Sinica, 24, 268-274. (in Chinese with English abstract)[王炜, 梁存柱, 刘钟龄, 郝敦元 (2000). 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 24, 268-274.] |
[42] | Wang XT, Zhang SH, Chen DD, Tan YR, Sun DS, Du GZ (2010). The effects of natural grazing intensity on plant community and soil nutrients in alpine meadow. Acta Agrestia Sinica, 18, 510-516. (in Chinese with English abstract)[王向涛, 张世虎, 陈懂懂, 谈嫣蓉, 孙大帅, 杜国祯 (2010). 不同放牧强度下高寒草甸植被特征和土壤养分变化研究. 草地学报, 18, 510-516.] |
[43] | Wang YH, Gong JR, Liu M, Huang YM, Yan X, Zhang ZY, Xu S, Luo QP (2015). Effects of grassland-use on soil respiration and litter decomposition. Chinese Journal of Plant Ecology, 39, 239-248. (in Chinese with English abstract)[王忆慧, 龚吉蕊, 刘敏, 黄永梅, 晏欣, 张梓瑜, 徐沙, 罗亲普 (2015). 草地利用方式对土壤呼吸和凋落物分解的影响. 植物生态学报, 39, 239-248.] |
[44] | Wang YH, He XY, Zhou GS (2002). Study on the Responses of Leymus chinensis steppe to grazing in songnen plain. Acta Agrestia Sinica, 10(1), 45-49. (in Chinese with English abstract)[王玉辉, 何兴元, 周广胜 (2002). 放牧强度对羊草草原的影响. 草地学报, 10(1), 45-49.] |
[45] | Xu L, Gao Q, Wang YL (2014). Species richness within a six-year slope exclosure in a temperate grassland and its relationship with aboveground biomass. Ecology and Environmental Sciences, 23, 398-405. (in Chinese with English abstract)[徐粒, 高琼, 王亚林 (2014). 围封6年对温带典型草原坡地物种多样性及其与地上生物量的关系的影响. 生态环境学报, 23, 398-405.] |
[46] | Yan YC, Tang HP, Xin XP, Wang X (2009). Advances in research on the effects of exclosure on grasslands. Acta Ecologica Sinica, 29, 5039-5046. (in Chinese with English abstract)[闫玉春, 唐海萍, 辛晓平, 王旭 (2009). 围封对草地的影响研究进展. 生态学报, 29, 5039-5046.] |
[47] | Yang H, Bai YF, Li YH, Han XG (2009). Response of plant species composition and community structure to long-term grazing in typical steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 33, 499-507. (in Chinese with English abstract)[杨浩, 白永飞, 李永宏, 韩兴国 (2009). 内蒙古典型草原物种组成和群落结构对长期放牧的响应. 植物生态学报, 33, 499-507.] |
[48] | Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010). Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 107, 1443-1446. |
[49] | Zhang JN, Lai X, Li G, Zhao JN, Zhang YS, Yang DL (2010). Response of plant diversity and soil nutrient condition to grazing disturbance in Stipa baicalensis Roshev. grassland. Acta Agrestia Sinica, 18, 177-182. (in Chinese with English abstract)[张静妮, 赖欣, 李刚, 赵建宁, 张永生, 杨殿林 (2010). 贝加尔针茅草原植物多样性及土壤养分对放牧干扰的响应. 草地学报, 18, 177-182.] |
[50] | Zhang YW, Han JG, Li ZQ (2002). A study of the effects of different grazing intensities on soil physical properties. Acta Agrestia Sinica, 10, 74-78. (in Chinese with English abstract)[张蕴薇, 韩建国, 李志强 (2002). 放牧强度对土壤物理性质的影响. 草地学报, 10, 74-78.] |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[3] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[4] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[5] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[6] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[7] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[8] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[9] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[10] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[11] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[12] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[13] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[14] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[15] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 5228
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2618
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La