首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis
Authors:Liu Yidong  Zhang Shuqun
Affiliation:Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.
Abstract:Mitogen-activated protein kinases (MAPKs) are implicated in regulating plant growth, development, and response to the environment. However, the underlying mechanisms are unknown because of the lack of information about their substrates. Using a conditional gain-of-function transgenic system, we demonstrated that the activation of SIPK, a tobacco (Nicotiana tabacum) stress-responsive MAPK, induces the biosynthesis of ethylene. Here, we report that MPK6, the Arabidopsis thaliana ortholog of tobacco SIPK, is required for ethylene induction in this transgenic system. Furthermore, we found that selected isoforms of 1-aminocyclopropane-1-carboxylic acid synthase (ACS), the rate-limiting enzyme of ethylene biosynthesis, are substrates of MPK6. Phosphorylation of ACS2 and ACS6 by MPK6 leads to the accumulation of ACS protein and, thus, elevated levels of cellular ACS activity and ethylene production. Expression of ACS6(DDD), a gain-of-function ACS6 mutant that mimics the phosphorylated form of ACS6, confers constitutive ethylene production and ethylene-induced phenotypes. Increasing numbers of stress stimuli have been shown to activate Arabidopsis MPK6 or its orthologs in other plant species. The identification of the first plant MAPK substrate in this report reveals one mechanism by which MPK6/SIPK regulates plant stress responses. Equally important, this study uncovers a signaling pathway that modulates the biosynthesis of ethylene, an important plant hormone, in plants under stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号