植物生态学报 ›› 2014, Vol. 38 ›› Issue (9): 941-948.DOI: 10.3724/SP.J.1258.2014.00088
所属专题: 生态化学计量
收稿日期:
2014-02-24
接受日期:
2014-07-25
出版日期:
2014-02-24
发布日期:
2014-09-22
通讯作者:
周玉梅
基金资助:
JIANG Xiao-Jie1,HU Yan-Ling2,HAN Jian-Qiu1,ZHOU Yu-Mei1,*()
Received:
2014-02-24
Accepted:
2014-07-25
Online:
2014-02-24
Published:
2014-09-22
Contact:
ZHOU Yu-Mei
摘要:
为探讨苔原植被对气候变暖的响应模式, 采用开顶箱增温法, 研究了3个生长季增温对长白山苔原3种代表植物——牛皮杜鹃(Rhododendron aureum)、笃斯越桔(Vaccinium uliginosum)和东亚仙女木(Dryas octopetala var. asiatica)的叶片及土壤碳(C)、氮(N)、磷(P)含量及其比值的影响。结果表明: 增温使土壤N和P的含量分别增加5.88%和4.83%, C含量降低13.19%; 增温和对照(不增温)条件下, 植物叶片的C、N、P含量及其比值在生长季有明显的变化。增温使笃斯越桔和东亚仙女木叶片的P含量分别增加10.34%和12.87%, 牛皮杜鹃则降低了16.26%, 增温并没有明显改变3种植物叶片的C、N含量, 但牛皮杜鹃和东亚仙女木叶片的C:N值在增温条件下呈现增加趋势。增温使土壤可利用的N、P含量增加。增温对3种植物的C:N值, 牛皮杜鹃、笃斯越桔的P含量, 以及东亚仙女木的C:P值都产生了显著的影响。结果表明增温增加了长白山苔原P元素对植物生长的限制, 且3种植物叶片的C、N、P化学计量学特性对增温的响应模式和尺度没有表现出一致性。
江肖洁,胡艳玲,韩建秋,周玉梅. 增温对苔原土壤和典型植物叶片碳、氮、磷化学计量学特征的影响. 植物生态学报, 2014, 38(9): 941-948. DOI: 10.3724/SP.J.1258.2014.00088
JIANG Xiao-Jie,HU Yan-Ling,HAN Jian-Qiu,ZHOU Yu-Mei. Effects of warming on carbon, nitrogen and phosphorus stoichiometry in tundra soil and leaves of typical plants. Chinese Journal of Plant Ecology, 2014, 38(9): 941-948. DOI: 10.3724/SP.J.1258.2014.00088
开顶箱 Open-top chamber | 对照样地 Control plot | 差值 Difference | |
---|---|---|---|
空气温度 Air temperature (°C) | 24.13 | 22.72 | +1.41 |
空气相对湿度 Air relative humidity (%) | 86.56 | 85.37 | +1.19 |
地下5 cm土壤温度 Soil temperature at 5 cm depth (°C) | 22.66 | 20.92 | +1.74 |
地下10 cm土壤温度 Soil temperature at 10 cm depth (°C) | 21.74 | 19.96 | +1.78 |
表1 生长季增温与对照条件下空气温度、空气相对湿度、地下5 cm和10 cm土壤温度
Table 1 Air temperature, air relative humidity, soil temperature at 5 cm and 10 cm depths in the open-top chambers and control plots during growing season
开顶箱 Open-top chamber | 对照样地 Control plot | 差值 Difference | |
---|---|---|---|
空气温度 Air temperature (°C) | 24.13 | 22.72 | +1.41 |
空气相对湿度 Air relative humidity (%) | 86.56 | 85.37 | +1.19 |
地下5 cm土壤温度 Soil temperature at 5 cm depth (°C) | 22.66 | 20.92 | +1.74 |
地下10 cm土壤温度 Soil temperature at 10 cm depth (°C) | 21.74 | 19.96 | +1.78 |
开顶箱 Open-top chamber | 对照样地 Control plot | |
---|---|---|
总碳含量 Total carbon content (%) | 6.14 ± 3.12A | 6.95 ± 2.07B |
总氮含量 Total nitrogen content (%) | 0.40 ± 0.09A | 0.37 ± 0.03B |
总磷含量 Total phosphorus content (%) | 0.56 ± 0.11A | 0.54 ± 0.03B |
表2 增温与对照条件下土壤碳(C)、氮(N)、磷(P)含量(平均值±标准偏差)
Table 2 Contents of carbon (C), nitrogen (N) and phosphorus (P) of soil in open-top chambers and control plots (mean ± SD)
开顶箱 Open-top chamber | 对照样地 Control plot | |
---|---|---|
总碳含量 Total carbon content (%) | 6.14 ± 3.12A | 6.95 ± 2.07B |
总氮含量 Total nitrogen content (%) | 0.40 ± 0.09A | 0.37 ± 0.03B |
总磷含量 Total phosphorus content (%) | 0.56 ± 0.11A | 0.54 ± 0.03B |
变异来源 Source of variation | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
牛皮杜鹃 Rhododendron aureum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
笃斯越桔 Vaccinium uliginosum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
东亚仙女木 Dryas octopetala var. asiatica | ||||||
增温 Warming (W) | ns | ns | ns | * | * | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
表3 双因素方差法分析增温、月份对牛皮杜鹃、笃斯越桔和东亚仙女木叶片碳(C)、氮(N)、磷(P)含量及其比值的影响
Table 3 Effects of warming and month on carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in leaves of Rhododendron aureum, Vaccinium uliginosum and Dryas octopetala var. asiatica using two-way ANOVA
变异来源 Source of variation | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
牛皮杜鹃 Rhododendron aureum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
笃斯越桔 Vaccinium uliginosum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
东亚仙女木 Dryas octopetala var. asiatica | ||||||
增温 Warming (W) | ns | ns | ns | * | * | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
图1 生长季增温与对照条件下牛皮杜鹃、笃斯越桔和东亚仙女木叶片碳(C)、氮(N)、磷(P)含量(平均值±标准偏差)。不同字母表示每个月份不同处理间差异显著(p < 0.05)。
Fig. 1 Carbon (C), nitrogen (N) and phosphorus (P) contents in leaves of Vaccinium uliginosum, Rhododendron aureum, and Dryas octopetala var. asiatica grown in open top chambers (OTC) and control plots during growing season (mean ± SD). Different letters indicate significant difference between OTC and control in the same month at the level of 0.05.
月份 Month | C:N | C:P | N:P | ||||||
---|---|---|---|---|---|---|---|---|---|
开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | ||||
牛皮杜鹃 Rhododendron aureum | 7 | 20.02 ± 0.23A | 9.11 ± 0.92B | 513.78 ± 8.41A | 346.75 ± 1.19B | 27.57 ± 1.19A | 38.45 ± 4.00B | ||
8 | 32.16 ± 2.69A | 27.73 ± 0.20B | 326.42 ± 19.08A | 281.95 ± 11.56B | 11.14 ± 0.50A | 10.54 ± 0.40B | |||
9 | 27.14 ± 0.17A | 22.68 ± 0.91B | 246.72 ± 1.32A | 223.45 ± 0.14B | 9.09 ± 0.03A | 10.20 ± 0.19B | |||
笃斯越桔 Vaccinium Uliginosum | 7 | 14.79 ± 0.72A | 21.31 ± 0.30B | 424.96 ± 17.46A | 457.97 ± 11.19B | 33.63 ± 1.43A | 20.70 ± 0.07B | ||
8 | 37.60 ± 0.81A | 32.28 ± 0.13B | 344.74 ± 7.67A | 376.66 ± 1.67B | 9.53 ± 0.49A | 11.86 ± 0.16B | |||
9 | 20.21 ± 1.19A | 24.57 ± 0.08B | 460.24 ± 18.50A | 530.88 ± 41.74B | 20.66 ± 1.66A | 23.52 ± 0.60B | |||
东亚仙女木 Dryas octopetala var. asiatica | 7 | 16.66 ± 0.10A | 13.70 ± 0.10B | 309.90 ± 4.85A | 375.65 ± 0.68B | 19.36 ± 1.15A | 27.42 ± 0.05B | ||
8 | 27.43 ± 0.38A | 26.20 ± 0.32B | 207.67 ± 3.59A | 263.74 ± 3.10B | 7.57 ± 0.14A | 10.18 ± 0.05B | |||
9 | 28.49 ± 1.02A | 22.60 ± 0.60B | 365.14 ± 0.03A | 317.03 ± 11.65B | 12.13 ± 0.24A | 15.80 ± 0.86B |
表4 生长季增温与对照条件下牛皮杜鹃、笃斯越桔和东亚仙女木叶片C:N、C:P、N:P比值(平均值±标准偏差)
Table 4 C:N, C:P, and N:P ratios in Vaccinium uliginosum, Rhododendron aureum, and Dryas octopetala var. asiatica grown in open top chambers and control plots during growing season (mean ± SD)
月份 Month | C:N | C:P | N:P | ||||||
---|---|---|---|---|---|---|---|---|---|
开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | ||||
牛皮杜鹃 Rhododendron aureum | 7 | 20.02 ± 0.23A | 9.11 ± 0.92B | 513.78 ± 8.41A | 346.75 ± 1.19B | 27.57 ± 1.19A | 38.45 ± 4.00B | ||
8 | 32.16 ± 2.69A | 27.73 ± 0.20B | 326.42 ± 19.08A | 281.95 ± 11.56B | 11.14 ± 0.50A | 10.54 ± 0.40B | |||
9 | 27.14 ± 0.17A | 22.68 ± 0.91B | 246.72 ± 1.32A | 223.45 ± 0.14B | 9.09 ± 0.03A | 10.20 ± 0.19B | |||
笃斯越桔 Vaccinium Uliginosum | 7 | 14.79 ± 0.72A | 21.31 ± 0.30B | 424.96 ± 17.46A | 457.97 ± 11.19B | 33.63 ± 1.43A | 20.70 ± 0.07B | ||
8 | 37.60 ± 0.81A | 32.28 ± 0.13B | 344.74 ± 7.67A | 376.66 ± 1.67B | 9.53 ± 0.49A | 11.86 ± 0.16B | |||
9 | 20.21 ± 1.19A | 24.57 ± 0.08B | 460.24 ± 18.50A | 530.88 ± 41.74B | 20.66 ± 1.66A | 23.52 ± 0.60B | |||
东亚仙女木 Dryas octopetala var. asiatica | 7 | 16.66 ± 0.10A | 13.70 ± 0.10B | 309.90 ± 4.85A | 375.65 ± 0.68B | 19.36 ± 1.15A | 27.42 ± 0.05B | ||
8 | 27.43 ± 0.38A | 26.20 ± 0.32B | 207.67 ± 3.59A | 263.74 ± 3.10B | 7.57 ± 0.14A | 10.18 ± 0.05B | |||
9 | 28.49 ± 1.02A | 22.60 ± 0.60B | 365.14 ± 0.03A | 317.03 ± 11.65B | 12.13 ± 0.24A | 15.80 ± 0.86B |
[1] | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] | Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine E, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Toland Ø, Turner PL, Walker LJ, Webber JM, Wookey PA (1999). Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecological Monographs, 69, 491-511. |
[3] | Bao SD (2008). Soil Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. (in Chinese) |
[ 鲍士旦 (2008). 土壤农化分析. 第三版.中国农业出版社, 北京.] | |
[4] | Bliss LC (1962). Adaptations of arctic and alpine plants to environmental conditions. Arctic and Alpine Research, 15, 117-144. |
[5] | Borjigidai A, Hikosaka K, Hirose T (2009). Carbon balance in a monospecific stand of an annual herb chenopodium album at an elevated CO2 concentration. Plant Ecology, 203, 33-44. |
[6] | Callaghan TV, Jonasson S, Nichols H, Heywood RB, Wookey PA (1995). Arctic terrestrial ecosystems and environmental change. Philosophical Transactions of the Royal Society, 352, 259-276. |
[7] | Carrillo Y, Pendall E, Dijkstra FA, Morgan JA, Newcomb JM (2011). Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant and Soil, 347, 339-350. |
[8] | Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999). Changing sources of nutrients during four million years of ecosystem development. Nature, 397, 491-497. |
[9] | Chapin III FS, Gaius R, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995). Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76, 694-711. |
[10] | Chapin III FS, Oechel WC (1983). Photosynthesis, respiration, and phosphate absorption by Carex aquatilis ecotypes along latitudinal and local environmental gradients. Eco- logy, 64, 743-751. |
[11] | Debevec EM, MacLean SF (1993). Design of greenhouses for the manipulation of temperature in tundra plant communities. Arctic and Alpine Research, 25, 56-62. |
[12] |
Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196, 807-815.
DOI URL PMID |
[13] | Drenovsky RE, Richards JH (2004). Critical N:P values: predicting nutrient deficiencies in desert shrubland. Plant and Soil, 259, 59-69. |
[14] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
URL PMID |
[15] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: What is the link with other resource economics traits? New Phytologist, 186, 879– 889.
URL PMID |
[16] | Gordon C, Wynn JM, Woodin SJ (2001). Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability. New Phytologist, 149, 461-471. |
[17] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[18] |
Hansen AH, Jonasson S, Michelsen A, Julkunen-Tiitto R (2006). Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs. Oecologia, 147, 1-11.
URL PMID |
[19] | Harpole WS, Nqai JT, Cleland EE, Seabloom EW, Borer ET, Bracken ME, Elser JJ, Gruner DS, Hillebrand H, Shurn JB, Smith JE (2011). Nutrition co-limitation of primary producer communities. Ecology Letter, 14, 852-862. |
[20] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[21] | Hobbie SE (1996). Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66, 503-522. |
[22] | Hobbie SE, Chapin III FS (1998). The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology, 79, 1526-1544. |
[23] | Idso SB, Kimball BA, Anderson MG, Mauney JR (1987). Effects of atmospheric CO2 enrichment on plant growth: the interactive role of air temperature. Agriculture, Ecosystems & Environment, 20, 1-10. |
[24] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate change 2013: the physical science basis. Contribution of working group 1. In: Stocker T, Qin DH, Plattner GK eds. Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 1535. |
[25] | Jiang GM (2005). Plant Ecophsiology. Higher Education Press, Beijing. (in Chinese) |
[ 蒋高明 (2005). 植物生理生态学. 高等教育出版社, 北京.] | |
[26] | Kaarlejärvi E, Baxter R, Hofgaard A, Hytteborn H, Khitun O, Molau U, Sjögersten S, Wookey P, Olofsson J (2012). Effects of warming on shrub abundance and chemistry drive ecosystem-level changes in a forest-tundra ecotone. Ecosystems, 15, 1219-1233. |
[27] | Keyser AR, Kimball JS, Nemani RR, Running SW (2000). Simulating the effects of climate change on the carbon balance of North American high latitude forests. Global Change Biology, 6, 185-195. |
[28] | Klanderud K, Totland Ø (2005). Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology, 86, 2047-2054. |
[29] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[30] | Körner C (1999). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd edn. Springer-Verlag, Berlin. |
[31] | Kudo G, Nordehäll U, Molau U (1999). Effects of snow melt timing on leaf traits, leaf production, and shoot growth of alpine plants: comparisons along a snow melt gradient in northern Sweden. Ecoscience, 6, 439-450. |
[32] | Marion GM, Bockheim JG, Brown J (1997a). Arctic soils and the ITEX experiment. Global Change Biology, 3, 33-43. |
[33] | Marion GM, Hastings SJ, Oberbauer SF, Oechel WC (1989). Soil-plant element relationships in a tundra ecosystem. Holarctic Ecology, 12, 296-303. |
[34] | Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Lévesque E, Molau U, Mølgaard P, Parsons AN, Svoboda J, Virginia RA (1997b). Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 3, 20-32. |
[35] | Nadelhoffer KJ, Giblin AE, Shaver GR. Laundre JA (1991). Effects of temperature and organic matter quality on C, N, and P mineralization in soils from six arctic ecosystems. Ecology, 72, 242-253. |
[36] | Nybakken L, Sandvik SM, Klanderud K (2011). Experimental warming had little effect on carbon-based secondary compounds, carbon and nitrogen in selected alpine and lichens. Environmental and Experimental Botany, 72, 368-376. |
[37] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
URL PMID |
[38] |
Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004). Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia, 139, 267-276.
DOI URL PMID |
[39] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitcell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
DOI URL PMID |
[40] |
Sardans J, Peltzer DA, Robert BA, Allen MS, Roger LM, Parfitt RL (2004). Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia, 139, 267-276.
DOI URL PMID |
[41] |
Sardans J, Peñuelas J (2013). Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant and Soil, 365, 1-33.
DOI URL PMID |
[42] | Sardans J, Peñuelas J, Estiarte M (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39, 223-235. |
[43] | Sun SC, Chen LZ (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica, 25, 76-82. (in Chinese with English abstract) |
[ 孙书存, 陈灵芝 (2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.] | |
[44] | Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534. |
[45] |
Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006). Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 103, 1342-1346.
DOI URL PMID |
[46] | Welker JM, Fahnestock JT, Sullivan PF, Chimner RA (2005). Leaf mineral nutrition of Arctic plants in response to warming and deeper snow in northern Alaska. Oikos, 109, 167-177. |
[47] | White A, Cannel MGR, Friend AD (1999). Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Global Environment Change, 9, 21-30. |
[48] | Xu ZF, Wan C (2010). Initial responses of soil CO2 efflux and C, N pools to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China. Plant and Soil, 336, 183-195. |
[49] | Yang MH (1981). The climate characteristics of Changbai Mountain and the north slope of vertical climatic zone. Acta Meteorologica Sinica, 39, 311-320. (in Chinese with English abstract) |
[ 杨美华 (1981). 长白山的气候特征及北坡垂直气候带. 气象学报, 39, 311-320.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[5] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[6] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[7] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[8] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[9] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[10] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[11] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[12] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[13] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[14] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[15] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3512
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1571
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La