首页 | 本学科首页   官方微博 | 高级检索  
   检索      

陆地生态系统碳水通量贡献区评价综述
引用本文:张慧,申双和,温学发,孙晓敏,米娜.陆地生态系统碳水通量贡献区评价综述[J].生态学报,2012,32(23):7622-7633.
作者姓名:张慧  申双和  温学发  孙晓敏  米娜
作者单位:1. 南京信息工程大学应用气象学院,南京210044;中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京100101
2. 南京信息工程大学应用气象学院,南京,210044
3. 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京,100101
4. 中国气象局沈阳大气环境研究所,沈阳,110016
基金项目:国家自然科学基金项目(31070408, 91125002,31000230);中国科学院知识创新工程重要方向项目青年人才项目(KZCX2-EW-QN305)
摘    要:综述了通量贡献区研究的基本理论、最新进展、研究热点与难点,旨在促进中国区域碳水通量数据空间代表性的定量评价.通量贡献区是通量观测点上风向的空间代表区域,能够反映代表区域对应下垫面的源区内每一点对观测点的通量贡献权重影响,主要受观测高度、空气动力学粗糙度和大气稳定度等因素的影响.通量贡献区通常随着观测高度的增加、空气动力学粗糙度的降低和大气稳定度的增加而变大,反之则变小.通量贡献区的评价模型包括解析模型、拉格朗日随机模型、大涡模拟和闭合模型四类.通量贡献区的评价结果可以广泛应用于通量数据质量评价、实验设计的指导、与遥感技术结合的区域尺度的总初级生产力的估算、城市CO2通量变化的评估以及能量闭合的评价等研究.最新研究表明,对流边界层的通量贡献区存在负的通量贡献区域;有裸地存在的情况下解析模型通常会低估裸地对观测通量的贡献;与水平地面处的通量贡献区相比,山谷处通量贡献区变小而山脊处的通量贡献区变大.通量贡献区模型研究应进一步考虑大气中的平流效应、湍流的非高斯扩散以及建立冠层内部的通量贡献区模型.解决森林冠层内流场的不均匀性、冠层重叠问题、冠层湍流的不稳定性是建立适合冠层内部通量贡献区模型的前提条件.在理想条件的气体释放验证试验的基础上,需要开展复杂条件下的相关试验.

关 键 词:涡度协方差  空间代表性  通量贡献区  源区
收稿时间:2011/11/5 0:00:00
修稿时间:2012/8/22 0:00:00

Flux footprint of carbon dioxide and vapor exchange over the terrestrial ecosystem: a review
ZHANG Hui,SHEN Shuanghe,WEN Xuef,SUN Xiaomin and MI Na.Flux footprint of carbon dioxide and vapor exchange over the terrestrial ecosystem: a review[J].Acta Ecologica Sinica,2012,32(23):7622-7633.
Authors:ZHANG Hui  SHEN Shuanghe  WEN Xuef  SUN Xiaomin and MI Na
Institution:College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China;Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China;College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China;Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China;Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China;Shenyang Institute of Atmospheric Environment, Chinese Meteorological Administration, Shenyang 110016, China
Abstract:The eddy covariance technique is a micrometeorological method to directly measure the exchanges of carbon, water and energy between the vegetation and atmosphere. The spatial resolution of meteorological observation of fluxes can expand from tens of meters to kilometers. The eddy covariance method is most accurate when the contributing area of the fluxes is topographically flat, and vegetation extends uniformly within the footprint area. Currently there are more than 100 eddy covariance flux observation sites in China. Most of them are established in non-ideal conditions such as forest, undulating surface, patchy canopy area. Therefore, it is important to accurately interpret the ecological representativeness of flux data by evaluation of the spatial representativeness of its footprint in China. This paper reviews basic theories of the footprint, along with progress and applications about footprint functions. It discusses the research focus and difficulties when considering the development of footprint. The footprint of a measurement point is the influence of the properties of the upwind source area weighted by the footprint function. The major effects on the dimensions of the flux footprint are measurement height, surface roughness length, and atmospheric stability. Increase in measurement height, decrease in surface roughness, and change in atmospheric stability from unstable to stable would enlarge the footprint size and move the peak contribution away from the instrument point. The opposite is also true. Footprint functions can be classified into four categories: Analytical model, Lagrangian stochastic model, Large eddy simulation, and Closure model. The footprint result can be applied to experimental design and to evaluate the quality of CO2 flux data, the variation of CO2 flux in urban areas, surface energy balance closure and gross primary productivity of landscape scales or regional scales combined with remote sensing. The latest research shows that there is a negative footprint zone in the convective boundary layer and that the location of the footprint peak is closer to the tower for convergent surface flow than for horizontally homogeneous flow. This is reversed for divergent surface flow. Atmospheric advection and non-Gaussian diffusion should be taken into account when building footprint functions. It is necessary for footprint functions within forested areas to consider spatial heterogeneity, clumpiness of vegetation, and instationarity of canopy layer turbulence. Analogical experiments should be implemented in complex terrain, based on the tracer release experiment in ideal conditions.
Keywords:eddy covariance  spatial representativeness  flux footprint  source area
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号