首页 | 本学科首页   官方微博 | 高级检索  
   检索      

近60年来印江河流域极端气候演变及其对净初级生产力和归一化植被指数的影响
引用本文:吴路华,王世杰,白晓永,周苗,宋小庆,田义超,罗光杰,李汇文,操玥,李琴,陈飞,邓元红.近60年来印江河流域极端气候演变及其对净初级生产力和归一化植被指数的影响[J].生态学报,2022,42(3):960-981.
作者姓名:吴路华  王世杰  白晓永  周苗  宋小庆  田义超  罗光杰  李汇文  操玥  李琴  陈飞  邓元红
作者单位:铜仁学院经济管理学院, 铜仁 554300;中国科学院地球化学研究所, 贵阳 550081;中国科学院大学, 北京 100049;中国科学院普定喀斯特生态系统观测研究站, 安顺 562100;中国科学院地球化学研究所, 贵阳 550081;中国科学院普定喀斯特生态系统观测研究站, 安顺 562100;天津大学表层地球系统科学研究院, 天津 300072;贵州省地质矿产勘查开发局111地质大队, 贵阳 550000;北部湾大学资源与环境学院, 钦州 535099;贵州省地理国情监测重点实验室, 贵阳 550018;西安交通大学人居环境与建筑工程学院, 西安 710049;西安地球环境创新研究院, 西安 710061
基金项目:国家重点研发计划项目(2016YFC0502102);中国科学院科技服务网络计划项目(KFJ-STS-ZDTP-036);"西部之光"人才培养计划(A类);贵州省科技计划项目(2017-2966)
摘    要:极端气候事件的发生改变了区域水热条件,并影响着生态环境变化。然而,目前长时间尺度上极端气候的演变规律及其对生态环境的影响尚不明晰。采用Mann-Kendall趋势及突变检验法、连续小波变换和Hurst指数法揭示了喀斯特槽谷印江河流域极端气候的变化趋势、突变时间、周期性特征和未来演变规律,并利用Lindeman-Merenda-Gold模型定量评估了极端气候溶变对生态环境变化的影响。结果表明:(1)印江河流域极端气温显著上升,降雨量增多,呈现湿热多雨的气候特征。未来极端气温事件持续等级将更高,持续强度也更强。(2)同类型极端气候具有潜在的关联性,但不同类型极端气候间的影响较小,且多呈负相关。(3)印江河流域平均净初级生产力(NPP)和归一化植被指数(NDVI)在2000—2015年间呈现相反的变化趋势,NPP平均值为598.53 g C m-2 a-1,平均减少速率为-3.32 g C m-2 a-1。NDVI平均值为0.59,平均增长速率为0.0013/a。(4)冷持续指数(CSDI)、平均温差(D...

关 键 词:喀斯特  流域  极端气候指数  生态环境  小波分析
收稿时间:2019/3/5 0:00:00
修稿时间:2021/8/15 0:00:00

Extreme climate evolution and its impact on NPP and NDVI in Yinjiang River basin in recent 60 years
WU Luhu,WANG Shijie,BAI Xiaoyong,ZHOU Miao,SONG Xiaoqing,TIAN Yichao,LUO Guangjie,LI Huiwen,CAO Yue,LI Qin,CHEN Fei,DENG Yuanhong.Extreme climate evolution and its impact on NPP and NDVI in Yinjiang River basin in recent 60 years[J].Acta Ecologica Sinica,2022,42(3):960-981.
Authors:WU Luhu  WANG Shijie  BAI Xiaoyong  ZHOU Miao  SONG Xiaoqing  TIAN Yichao  LUO Guangjie  LI Huiwen  CAO Yue  LI Qin  CHEN Fei  DENG Yuanhong
Institution:School of Economics and Management, Tongren University, Tongren 554300, China;State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guiyang 550081, China;University of Chinese Academy of Sciences, Beijing 100049, China;Puding Karst Ecosystem Observation and Research Station, Chinese Academy of Sciences, Anshun 562100, China;State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guiyang 550081, China;Puding Karst Ecosystem Observation and Research Station, Chinese Academy of Sciences, Anshun 562100, China;111 Geological Party, Guizhou Bureau of Geology and Mineral Exploration & Development, Guiyang 550000, China;College of Resources and Environment, Beibu Gulf University, Qinzhou 535099, China;Guizhou Provincial Key Laboratory of Geographic State Monitoring, Guiyang 550018, China;School of Human Settlements and Civil Engineering, Xi''an Jiaotong University, Xi''an 710049, China;Xi''an Institute for Innovative Earth Environment Research, Xi''an 710061, China
Abstract:The occurrence of extreme climate events has changed the regional hydrothermal conditions and affected the changes of ecological environment. However, at present, the evolution of extreme climate and its impact on ecological environment are unclear. Therefore, the methods of Mann-Kendall test, continuous wavelet transform, and Hurst exponent were applied to analyze the change trend, abrupt time, periodicity and future evolution of extreme climate events in Yinjiang River basin. Then, the Lindeman-Merenda-Gold model was used to quantitatively evaluate the impacts of extreme climate events to ecological environment change. The results were obtained:(1) The extreme temperature events in the Yinjiang River basin increased significantly, and the rainfall also increased, showing a hot and rainy climate. In the future, the level of extreme temperature events will be higher and the intensity will be stronger; (2) The same type of extreme climate had a potential correlation, but the influence of different types of extreme climate was small, and most of them showed negative correlation; (3) The average net primary production (NPP) and normalized difference vegetation index (NDVI) of the Yinjiang River basin showed an opposite trend from 2000 to 2015. The average NPP was 598.53 g C m-2 a-1 with the average reduction rate of -3.32 g C m-2 a-1 while the average NDVI value was 0.59 with an average growth rate of 0.0013/a; (4) The cold spell duration indicator(CSDI), diurnal temperature range (DTR), icing days defined by system threshold (ID6.4), and growing season length (GSL) contributed significantly to NPP, with contributions of 12.64%, 11.50%, 11.05%, and 7.4%, respectively. Among them, the CSDI, DTR, and GSL showed negative contribution to NPP changes, while ID6.4 showed positive contribution. Most extreme climate indices contributed less than 5% to the NPP changes. ID6.4 had the greatest impact on NDVI, followed by warm nights (TN90p), warm spell duration indicator (WSDI), and warm days (TX90p), with contribution rates of 13.67%, 13.54%, 12.95%, and 10.02%, respectively. On the whole, the study stressed that the hot and rainy climate in the Yinjiang River basin promoted the growth of NDVI during 2000-2015, but caused a significantly negative impact on the accumulation of NPP due to the increase of temperature and rainfall. The results can provide reference for climate prediction, water resources management and ecological environment restoration in a basin of karst trough valley.
Keywords:karst  watershed  extreme climate index  ecological environment  wavelet analysis
本文献已被 维普 等数据库收录!
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号