首页 | 本学科首页   官方微博 | 高级检索  
   检索      

珍稀濒危植物堇叶紫金牛对持续干旱的生理响应
引用本文:代英超,徐奎源,马凯,张云,夏国华,李根有.珍稀濒危植物堇叶紫金牛对持续干旱的生理响应[J].生态学报,2015,35(9):2954-2959.
作者姓名:代英超  徐奎源  马凯  张云  夏国华  李根有
作者单位:浙江农林大学亚热带森林培育国家重点实验室培育基地, 临安 311300;浙江农林大学林业与生物技术学院, 临安 311300,浙江省建德市林业局, 建德 311600,杭州市旅游职业学校, 杭州 310052,浙江农林大学风景园林与建筑学院, 临安 311300,浙江农林大学亚热带森林培育国家重点实验室培育基地, 临安 311300;浙江农林大学林业与生物技术学院, 临安 311300,浙江农林大学林业与生物技术学院, 临安 311300
基金项目:国家自然科技资源平台项目(2005DKA21403); 浙江省重大科技攻关资助项目(2006C12059-2)
摘    要:采用盆栽控水法,研究了珍稀濒危植物堇叶紫金牛(Ardisia violacea)在持续干旱条件下的生理响应。随着持续干旱时间的延长,堇叶紫金牛应对持续干旱的阶段可分为适应期、轻度干旱期、中度干旱期和重度干旱期。在适应期和轻度干旱期,堇叶紫金牛叶片游离脯氨酸和可溶性糖含量稳定在一个较低水平,可溶性蛋白质含量先下降后快速上升,细胞膜系统和抗氧化酶系统能主动进行生理调节;中度干旱期,丙二醛(MDA)含量和质膜相对透性迅速升高,细胞膜系统受损加剧,游离脯氨酸、可溶性糖含量均急剧增加,对抵御干旱起到重要的渗透调节作用。在轻度干旱期和中度干旱期,光合色素中叶绿素a和叶绿素b含量显著提高,以抵抗干旱胁迫。重度干旱期,细胞膜系统、抗氧化酶SOD、游离脯氨酸和可溶性糖含量上升,但MDA略微下降,这时可能达到植物耐受干旱的极限,不再发生膜脂过氧化作用。综上表明,堇叶紫金牛具有较强的耐旱性,RWC为49.94%是细胞膜系统、抗氧化酶系统和渗透调节物质含量变化的拐点,渗透调节和抗氧化酶系统的主动适应是其耐旱的主要机制。

关 键 词:堇叶紫金牛  持续干旱  生理响应  抗旱性
收稿时间:2013/8/30 0:00:00
修稿时间:2014/8/1 0:00:00

Physiological responses of the rare and endangered Ardisia violacea (Myrsinaceae) seedlings to progressive drought stress
DAI Yingchao,XU Kuiyuan,MA Kai,ZHANG Yun,XIA Guohua and LI Genyou.Physiological responses of the rare and endangered Ardisia violacea (Myrsinaceae) seedlings to progressive drought stress[J].Acta Ecologica Sinica,2015,35(9):2954-2959.
Authors:DAI Yingchao  XU Kuiyuan  MA Kai  ZHANG Yun  XIA Guohua and LI Genyou
Institution:School of Forestry and Biotechnology; Zhejiang Agricultural & Forestry University, Lin''an 311300, China;Nurturing Station for the State Key Laboratory of Subtropical Silviculture; Zhejiang Agricultural & Forestry University, Lin''an 311300, China,Forestry Bureau of Jiande County, Jiande 311600, China,Hangzhou Tourism Vocational School, Hangzhou 310052, China,School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Lin''an 311300, China,School of Forestry and Biotechnology; Zhejiang Agricultural & Forestry University, Lin''an 311300, China;Nurturing Station for the State Key Laboratory of Subtropical Silviculture; Zhejiang Agricultural & Forestry University, Lin''an 311300, China and Nurturing Station for the State Key Laboratory of Subtropical Silviculture; Zhejiang Agricultural & Forestry University, Lin''an 311300, China
Abstract:In this paper, water controlling experiment was used to measure the physiological responses of Ardisia violacea. The results show that: with the prolonged drought stress, the soil water content decreased gradually. There are four stages of A. violacea''s response to drought stress, including adaptation period, mild drought stress period, moderate drought stress period and severe drought stress period. Under adaptation period and mild drought stress period, the content of free proline and soluble sugar stabilized at a low level while the soluble protein content decreased and then increased rapidly, and the membrane systems and antioxidant enzyme systems can conduct physiological regulation. Under moderate drought stress period, malondialdehyde and membrane permeability increased rapidly, and membrane system was damaged. The content of free proline and soluble sugar increased remarkably, which act as a key role in resist drought stress. Photosynthetic pigments including hlorophyll a and chlorophyll b significantly increased during the mild and moderate drought stress periods in order to resist drought stress. Under serve drought stress period, the membrane systems, SOD, free proline and soluble sugar increased, but MDA decreased, which means the plant reached the tolerable limit and no more membrane lipid peroxidation. In summary, 49.94% of RWC is the turning point of membrane system, antioxidant enzyme systems and osmotic adjustment substances. The active adaptation of osmotic adjustment and antioxidant enzyme systems is the main mechanism of its drought tolerance. A. violacea has strong drought resistance.
Keywords:Ardisia violacea  progressive drought  physiological response  drought resistance
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号