首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation
Authors:Liu Kun-Hsiang  Tsay Yi-Fang
Institution:Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
Abstract:To counteract fluctuating nutrient environments, plants have evolved high- and low-affinity uptake systems. These two systems were traditionally thought to be genetically distinct, but, recently, two Arabidopsis transporters, AtKUP1 and CHL1, were shown to have dual affinities. However, little is known about how a dual-affinity transporter works and the advantages of having a dual-affinity transporter. This study demonstrates that, in the case of CHL1, switching between the two modes of action is regulated by phosphorylation at threonine residue 101; when phosphorylated, CHL1 functions as a high-affinity nitrate transporter, whereas, when dephosphorylated, it functions as a low-affinity nitrate transporter. This regulatory mechanism allows plants to change rapidly between high- and low-affinity nitrate uptake, which may be critical when competing for limited nitrogen. These results demonstrate yet another regulatory role of phosphorylation in plant physiology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号