首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope
Authors:Hans-Jürgen Butt
Institution:Max-Planck-Institut für Biophysik, Kennedyallee 70, 6000 Frankfurt a. M. 70, Germany
Abstract:In atomic force microscopy, the tip experiences electrostatic, van der Waals, and hydration forces when imaging in electrolyte solution above a charged surface. To study the electrostatic interaction force vs distance, curves were recorded at different salt concentrations and pH values. This was done with tips bearing surface charges of different sign and magnitude (silicon nitride, Al2O3, glass, and diamond) on negatively charged surfaces (mica and glass). In addition to the van der Waals attraction, neutral and negatively charged tips experienced a repulsive force. This repulsive force depended on the salt concentration. It decayed exponentially with distance having a decay length similar to the Debye length. Typical forces were about 0.1 nN strong. With positively charged tips, purely attractive forces were observed. Comparing these results with calculations showed the electrostatic origin of this force.

In the presence of high concentrations (> 3 M) of divalent cations, where the electrostatic force can be completely ignored, another repulsive force was observed with silicon nitride tips on mica. This force decayed roughly exponentially with a decay length of 3 nm and was ~0.07-nN strong. This repulsion is attributed to the hydration force.

Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号