首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Optical measurement of transverse molecular diffusion in a microchannel
Authors:Kamholz A E  Schilling E A  Yager P
Institution:Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
Abstract:Quantitative analysis of molecular diffusion is a necessity for the efficient design of most microfluidic devices as well as an important biophysical method in its own right. This study demonstrates the rapid measurement of diffusion coefficients of large and small molecules in a microfluidic device, the T-sensor, by means of conventional epifluorescence microscopy. Data were collected by monitoring the transverse flux of analyte from a sample stream into a second stream flowing alongside it. As indicated by the low Reynolds numbers of the system (< 1), flow is laminar, and molecular transport between streams occurs only by diffusion. Quantitative determinations were made by fitting data with predictions of a one-dimensional model. Analysis was made of the flow development and its effect on the distribution of diffusing analyte using a three-dimensional modeling software package. Diffusion coefficients were measured for four fluorescently labeled molecules: fluorescein-biotin, insulin, ovalbumin, and streptavidin. The resulting values differed from accepted results by an average of 2.4%. Microfluidic system parameters can be selected to achieve accurate diffusion coefficient measurements and to optimize other microfluidic devices that rely on precise transverse transport of molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号