首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Caerulein-induced acute pancreatitis in rats: changes in glycoprotein-composition of subcellular membrane systems in acinar cells
Authors:S Willemer  R Bialek  H K?hler  G Adler
Institution:Department of Internal Medicine, Philipps-University Marburg, Federal Republic of Germany.
Abstract:Caerulein-induced acute pancreatitis is characterized by the occurrence of two membrane-bound vacuolar systems in acinar cells. Beside digestive enzymes containing secretory vacuoles, lysosomal autophagic structures can be identified at the ultrastructural level. In the present study glycoconjugate patterns of the surrounding membranes were characterized by ultrastructural lectin-binding experiments using five colloidal-gold labeled lectins with distinct sugar specificities. Furthermore, the profile of membrane glycoproteins of isolated vacuolar fractions was studied by SDS-PAGE and lectin-blotting. In pancreatitis, membranes of secretory vacuoles showed a significant lower degree of lectin-binding compared to normal zymogen granules. In contrast, newly appearing autophagic vacuoles in pancreatitis revealed a strong membrane labelling for most lectins used. The pattern of membrane glycoproteins of secretory and autophagic vacuoles as determined by SDS-PAGE and lectin-blotting differed from those of normal zymogen granules resembling the protein profile of smooth microsomes. Since this pattern requires a previous passage through Golgi stacks, it is assumed that the two types of vacuoles derive from Golgi elements. For the pathogenesis of caerulein pancreatitis these vacuolar post-Golgi structures seem to play an important role.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号