首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reorganization of endothelial cells cytoskeleton during formation of functional monolayer in vitro
Authors:A S Shakhov  A D Verin  I B Alieva
Institution:1. Electron Microscopy Department, Belozerskii Institute of Physical and Chemical Biology, Moscow State University, Moscow, Russia
2. Vascular Biology Center, Georgia Regents University, Augusta, GA, 30912, USA
Abstract:Endothelium lining the inner surface of vessels regulates permeability of vascular wall by providing exchange between blood circulation in vessels and tissue fluid and therefore performs a barrier function. Endothelial cells (ECs) in culture are able to maintain the barrier function peculiar to cells of vascular endothelium in vivo. The endothelial monolayer in vitro is a unique model system that allows studying interaction of cytoskeletal and adhesive structures of endotheliocytes from the earliest stages of its formation. In the present work, we described and quantitatively characterized the changes of EC cytoskeleton from the moment of spreading of endotheliocytes on glass and the formation of the first contacts between neighbor cells until formation of a functional confluent monolayer. The main type of intermediate filaments of ECs are vimentin filaments. At different stages of endothelial monolayer formation, disposition of vimentin filaments and their amount do not change essentially, they occupy more than 80% of the cell area. Actin filaments system of endotheliocytes is represented by cortical actin at the cell periphery and by bundles of actin stress fibers organized in parallel. With formation of contacts between cells in native endothelial cells, the number of actin filaments rises and thickness of their bundles increases. With formation of endothelial monolayer, there are also changes in the microtubules system—their number increases at the cell edge. At all stages of EC monolayer formation, the number of microtubules in the region of the already formed intercellular contacts exceeds the number of microtubules in the free lamella region of the cell.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号