首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Patterns of wheel running are related to Fos expression in neuropeptide-Y-containing neurons in the intergeniculate leaflet of Arvicanthis niloticus
Authors:Smale L  Mcelhinny T  Nixon J  Gubik B  Rose S
Institution:Department of Psychology, Michigan State University, East Lansing 48824, USA.
Abstract:A variety of nonphotic influences on circadian rhythms have been documented in mammals. In hamsters, one such influence, running in a novel wheel, is mediated in part by the pathway extending from neuropeptide-Y (NPY)-containing cells within the intergeniculate leaflet (IGL) of the thalamus to the hypothalamic suprachiasmatic nucleus (SCN). Arvicanthis niloticus is a species in which all individuals are diurnal with respect to general activity and body temperature when they are housed without a running wheel, but access to a running wheel induces a subset of individuals to become nocturnal. In the first study, the authors evaluated the possibility that nocturnal and diurnal patterns of wheel running in Arvicanthis are correlated with differences in IGL function. Adult male Arvicanthis housed in a 12:12 light-dark (LD) cycle were monitored in wheels, classified as nocturnal or diurnal, and then perfused either 4 h after lights-on or 4 h after lights-off. Sections through the intergeniculate leaflet were processed for immunohistochemical labeling of Fos and NPY. The percentage of NPY cells that expressed Fos was significantly influenced by an interaction between time of day and phenotype such that it rose from night to day in diurnal animals, and from day to night in nocturnal animals. In the second experiment, the authors established that running in a wheel actually induces Fos in the IGL of Arvicanthis. Specifically, the proportion of NPY cells expressing Fos was increased by access to wheels in nocturnal animals at night and in diurnal animals during the day. In the third experiment, the authors established that lesions of the IGL eliminate NPY fibers within the SCN, suggesting that these IGL cells project to the SCN in this species as has been established in other rodents. Together, these data demonstrate a clear difference in NPY cell function in nocturnal and diurnal Arvicanthis that appears to be caused, at least in part, by the differences in their wheel-running patterns, and that NPY cells within the IGL project to the SCN in Arvicanthis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号