首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential function of the two nucleotide binding domains on cystic fibrosis transmembrane conductance regulator
Authors:Nagel G
Institution:Max-Planck-Institut für Biophysik, Kennedyallee 70, 60596, Frankfurt/M., Germany.
Abstract:The genetic disease cystic fibrosis is caused by defects in the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). CFTR belongs to the family of ABC transporters. In contrast to most other members of this family which transport substrates actively across a membrane, the main function of CFTR is to regulate passive flux of substrates across the plasma membrane. Chloride channel activity of CFTR is dependent on protein phosphorylation and presence of nucleoside triphosphates. From electrophysiological studies of CFTR detailed models of its regulation by phosphorylation and nucleotide interaction have evolved. These investigations provide ample evidence that ATP hydrolysis is crucial for CFTR gating. It becomes apparent that the two nucleotide binding domains on CFTR not only diverge strongly in sequence, but also in function. Based on previous models and taking into account new data from pre-steady-state experiments, a refined model for the action of nucleotides at two nucleotide binding domains was recently proposed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号