首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Imaging flow cytometry challenges the usefulness of classically used extracellular vesicle labeling dyes and qualifies the novel dye Exoria for the labeling of mesenchymal stromal cell–extracellular vesicle preparations
Institution:1. Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;2. Exopharm Limited, Melbourne, Australia
Abstract:Background aimsExtracellular vesicles (EVs) are involved in mediating intercellular communication processes. An important goal within the EV field is the study of the biodistribution of EVs and the identification of their target cells. Considering that EV uptake is assumed to be important for EVs in mediating intercellular communication processes, labeling with fluorescent dyes has emerged as a broadly distributed strategy for the identification of EV target cells and tissues. However, the accuracy and specificity of commonly utilized labeling dyes have not been sufficiently analyzed.MethodsBy combining recent advances in imaging flow cytometry for the phenotypic analysis of single EVs and aiming to identify target cells for EVs within therapeutically relevant mesenchymal stromal cell (MSC)-EV preparations, the authors explored the EV labeling efficacy of various fluorescent dyes, specifically carboxyfluorescein diacetate succinimidyl ester, calcein AM, PKH67, BODIPY TR ceramide (Thermo Fisher Scientific, Darmstadt, Germany) and a novel lipid dye called Exoria (Exopharm Limited, Melbourne, Australia).ResultsThe authors’ analyses qualified Exoria as the only dye that specifically labeled EVs within the MSC-EV preparations. Furthermore, the authors demonstrated that Exoria labeling did not interfere with the immunomodulatory properties of the MSC-EV preparations as tested in a multi-donor mixed lymphocyte reaction assay. Within this assay, labeled EVs were differentially taken up by different immune cell types.ConclusionsOverall, the results qualify Exoria as an appropriate dye for the labeling of EVs derived from the authors’ MSC-EV preparations. This study also demonstrates the need for the development of next-generation EV characterization tools that are able to localize and confirm the specificity of EV labeling.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号