首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparison of the litterfall and forest floor organic matter and nitrogen dynamics of upland forest ecosystems in north central Wisconsin
Authors:Karin S Fassnacht  Stith T Gower
Institution:(1) United States Forest Service, Pacific Northwest Research Station, 3200SW Jefferson Way, 97331 Corvallis, OR, USA;(2) Department of Forest Ecology and Management, University of Wisconsin, 1630 Linden Drive, 53706 Madison, WI, USA
Abstract:It has been suggested that a feedback exists between the vegetation and soil whereby fertile (vs infertile) sites support species with shorter leaf life spans and higher quality litter which promotes rapid decomposition and higher soil nutrient availability. The objectives of this study were to (1) characterize and compare the C and N dynamics of dominant upland forest ecosystems in north central Wisconsin, (2) compare the nutrient use efficiency (NUE) of these forests, and (3) examine the relationship between NUE and site characteristics. Analyzing data from 24 stands spanning a moisture / nutrient gradient, we found that resource-poor stands transferred less C and N from the vegetation to the forest floor, and that N remained in the forest floor at least four times longer than in more resource-rich stands. Analyzing data by leaf habit, we found that less N was transferred to the forest floor annually via litterfall in conifer stands, and that N remained in the forest floor of these stands nearly three times longer than in hardwood stands. NUE did not differ among forests with different resource availabilities, but was greater for conifers than for hardwoods. Vitousek's (1982) index of nutrient use efficiency (INUE1)=leaf litterfall biomass / leaf litterfall N) was most closely correlated to litterfall specific leaf area and percent hardwood leaf area index, suggesting that differences in species composition may have been responsible for the differences in NUE among our stands. NUE2, defined as ANPP / leaf litterfall N, was not closely correlated to any of the site characteristics included in this analysis.
Keywords:broad-leaved deciduous  forest floor residence time  needle-leaved evergreen  nitrogen cycling  nutrient use efficiency  Wisconsin
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号