首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Benthic Bacterial Production and Protozoan Predation in a Silty Freshwater Environment
Authors:C?Wieltschnig  U R?Fischer  A K T?Kirschner  Email author" target="_blank">B?VelimirovEmail author
Institution:(1) Institute of Medical Biology, Research Group General Microbiology, University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
Abstract:The interrelation of heterotrophic bacteria with bacterivorous protists has been widely studied in pelagic environments, but data on benthic habitats, especially in freshwater systems, are still scarce. We present a seasonal study focusing on bacterivory by heterotrophic nanoflagellates (HNF) and ciliates in the silty sediment of a temperate macrophyte-dominated oxbow lake. From January 2001 to February 2002 we monitored the standing stock of bacteria and protozoa, bacterial secondary production (BSP, 3H-thymidine, and 14C-leucine incorporation), and grazing rates of HNF and ciliates on bacteria (FLB uptake) in the oxic sediment of the investigated system. BSP ranged from 470 to 4050 µg C L–1 wet sediment h–1. The bacterial compartment turned out to be highly dynamic, indicated by population doubling times (0.6–10.0 d), which were comparable to those in the water column of the investigated system. Yet, the control mechanisms acting upon the bacterial population led to a relative constancy of bacterial standing stock during a year. Ingestion rates of protozoan grazers were 0–20.0 bacteria HNF–1 h–1 and 0–97.6 bacteria ciliate–1 h–1. HNF and ciliates together cropped 0–14 (mean 4)% of BSP, indicating that they did not significantly contribute to benthic bacterial mortality during any period of the year. The low impact of protozoan grazing was due to the low numbers of HNF and ciliates in relation to bacteria (1.8–3.5 × 104 bacteria HNF–1, 0.9–3.1 × 106 bacteria ciliate–1). Thus, grazing by HNF and ciliates could be ruled out as a parameter regulating bacterial standing stock or production in the sediment of the investigated system, but the factors responsible for the limitation of benthic protistan densities and the fate of benthic BSP remained unclear.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号