首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Interaction of Equine Lysozyme:Oleic Acid Complexes with Lipid Membranes Suggests a Cargo Off-Loading Mechanism
Authors:Søren B Nielsen  Kristina Wilhelm  Jürgen Schleucher  Daniel Otzen
Institution:1 Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
2 Department of Food Science, Faculty of Agricultural Sciences, University of Aarhus, Blichers Allé, DK-8830 Tjele, Denmark
3 Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
Abstract:The normal function of equine lysozyme (EL) is the hydrolysis of peptidoglycan residues of bacterial cell walls. EL is closely related to α-lactalbumins with respect to sequence and structure and further possesses the calcium binding site of α-lactalbumins. Recently, EL multimeric complexes with oleic acids (ELOAs) were shown to possess tinctorial and morphological properties, similar to amyloidal aggregates, and to be cytotoxic. ELOA's interactions with phospholipid membranes appear to be central to its biological action, similar to human α-lactalbumin made lethal to tumor cells. Here, we describe the interaction of ELOA with phospholipid membranes. Confocal scanning laser microscopy shows that ELOA, but not native EL, accumulates on the surface of giant unilamellar vesicles, without inducing significant membrane permeability. Quartz crystal microbalance with dissipation data indicated an essentially non-disruptive binding of ELOA to supported lipid bilayers, leading to formation of highly dissipative and “soft” lipid membrane; at higher concentrations of ELOA, the lipid membrane desorbs from the surface probably as bilayer sheets of vesicles. This membrane rearrangement occurred to a similar extent when free oleic acid (OA) was added, but not when free OA was removed from ELOA by prior incubation with bovine serum albumin, emphasizing the role of OA in this process. NMR data indicated an equilibrium between free and bound OA, which shifts towards free OA as ELOA is progressively diluted, indicating that OA is relatively loosely bound. Activity measurements together with fluorescence spectroscopy and circular dichroism suggested a conversion of ELOA towards a more native-like state on interaction with lipid membranes, although complete refolding was not observed. Altogether, these results suggest that ELOA may act as an OA carrier and facilitate OA transfer to the membrane. ELOA's properties illustrate that protein folding variants may possess specific functional properties distinct from the native protein.
Keywords:QCM-D  quartz crystal microbalance with dissipation  EL  equine lysozyme  ELOA  EL complex with oleic acid  OA  oleic acid  CSLM  confocal scanning laser microscopy  Df  dissipation-frequency  HAMLET  human α-lactalbumin made lethal to tumor cells  BSA  bovine serum albumin  GUV  giant unilamellar vesicle  LUV  large unilamellar vesicle  PBS  phosphate-buffered saline  DOPC  1  2-dioleoylphosphatidylcholine  DOPG  1  2-dioleoylphosphatidylglycerol  NBD-X SE  succinimidyl 6-(N-(7-nitrobenz-2-oxa-1  3-diazol-4-yl)amino)hexanoate  RT  room temperature
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号