首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High resolution structure of an oligomeric eye lens beta-crystallin. Loops, arches, linkers and interfaces in beta B2 dimer compared to a monomeric gamma-crystallin.
Authors:R Lapatto  V Nalini  B Bax  H Driessen  P F Lindley  T L Blundell  C Slingsby
Institution:Laboratory of Molecular Biology, Birkbeck College, London University, U.K.
Abstract:beta-Crystallins are polydisperse, oligomeric structural proteins that have a major role in forming the high refractive index of the eye lens. Using single crystal X-ray crystallography with molecular replacement, the structure of beta B2 dimer has been solved at 2.1 A resolution. Each subunit comprises an N and C-terminal domain that are very similar and each domain is formed from two similar "Greek key" motifs related by a local dyad. Sequence differences in the internally quadruplicated molecules, analysed in terms of their beta-sheets, hairpins and arches, give rise to structural differences in the motifs. Whereas the related family of gamma-crystallins are monomers, beta-crystallins are always oligomers. In the beta B2 subunit, the domains, each comprising two motifs, are separated by an extended linking peptide. A crystallographic 2-fold axis relates the two subunits of the dimer so that the N-terminal domain of one subunit of beta B2 and the C-terminal domain of the symmetry-related subunit are topologically equivalent to the two covalently connected domains of gamma B-crystallin. The intersubunit domain interface is very similar to the intradomain interface of gamma B, although many sequence differences have resulted in an increase in polar interactions between domains in beta B2. Comparison of the structures of beta B2 and gamma B-crystallins shows that the two families differ largely in the conformation of their connecting peptides. A further extensive lattice contact indicates a tetramer with 222 symmetry. The ways in which insertions and extensions in the beta-crystallin effect oligomer interactions are described. The two kinds of crystallin are analysed for structural features that account for their different stabilities. These studies are a basis for understanding formation of higher aggregates in the lens.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号