首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetics of drug-DNA interaction. Dependence of the binding mechanism on structure of the ligand
Authors:L P Wakelin  M J Waring
Institution:University of Cambridge Department of Pharmacology Medical School, Hills Road, Cambridge CB2 2QD, England
Abstract:Kinetic and equilibrium studies of the binding of several phenanthridines and acridines to DNA have been performed to investigate the physical processes underlying the direct ligand transfer mechanism of drug-DNA interaction· Substitution of the 6-phenyl ring of dimidium with a p-carboxyl residue, or complete removal of either the 6-substituent or the 3-amino group, does not prevent the phenanthridine chromophore from transferring directly between binding sites. Loss of the aromatic ring increases association rate constants three- to ninefold and enhances dissociation rates by factors of up to 12; the rates of direct transfer and dissociation from site 1 are the most perturbed. The presence of a phenyl ring stabilizes the site 1 complex and lowers the binding constant to site 2. Introduction of the p-carboxyl group does not affect the equilibrium distribution of bound forms but produces equivalent increases (2·5-fold) in forward and reverse rate constants for binding to site 1 and for the direct transfer step. The 3-amino group greatly stabilizes the site 1 complex. Its removal accelerates all kinetic processes except for the reverse transfer step; the transfer rate is enhanced 25-fold and binding to site 2 is increased 12-fold. The dissociation rate from site 1 rises by a factor of 45 and that from site 2 by a factor of 5·8.10-Methyl-9-aminoacridine binds via the direct transfer pathway with rate and equilibrium constants similar to those of the 3-desamino derivative of ethidium. This compound provides the first fully characterized example of an acridine that utilizes bimolecular transfer. By contrast, rivanol (6,9-diamino-2-ethoxyacridine) interacts with DNA via a two-step sequential mechanism analogous to that seen with proflavine, yet its intrinsic association constant is three times higher. This results from tighter ‘external’ attachment to the helix, together with a decrease in equilibrium constant for the insertion step, which is markedly slower than that of proflavine. There appears to be a simple relation between the apparent enthalpy of binding and the number of extracyclic amino substituents on the intercalating chromophore.We propose that the two bound forms that participate in direct ligand transfer represent molecules intercalated via one or other of the grooves of DNA, and that the transfer pathway corresponds to exchange of drug between the wide groove of one helix and the narrow groove of another. The ability to form strongly bound complexes at the surface of the helix appears to play a major role in determining the mechanism of ligand binding.
Keywords:BIII  crystal form BIII of hexokinase B  HKA · G hexokinase A  glucose complex  CrADP  inert co-ordination complex between chromium (III)  ADP  F(h)  structure factor amplitude with indices (h  k  2)  PTC  platinum chloride derivative  r  m  s    root-mean-square  OTG  o-toluoyl-2  glucosamine
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号