首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Impact of disease mutations on the desmin filament assembly process
Authors:Bär Harald  Mücke Norbert  Ringler Philippe  Müller Shirley A  Kreplak Laurent  Katus Hugo A  Aebi Ueli  Herrmann Harald
Institution:Department of Cardiology, University of Heidelberg, D-69120 Heidelberg, Germany.
Abstract:It has been documented that mutations in the human desmin gene lead to a severe type of myofibrillar myopathy, termed more specifically desminopathy, which affects cardiac and skeletal as well as smooth muscle. We showed recently that 14 recombinant versions of these disease-causing desmin variants, all involving single amino acid substitutions in the alpha-helical rod domain, interfere with in vitro filament formation at distinct stages of the assembly process. We now provide mechanistic details of how these mutations affect the filament assembly process by employing analytical ultracentrifugation, time-lapse electron microscopy of negatively stained and glycerol-sprayed/low-angle rotary metal-shadowed samples, quantitative scanning transmission electron microscopy, and viscometric studies. In particular, the soluble assembly intermediates of two of the mutated proteins exhibit unusually high s-values, compatible with octamers and other higher-order complexes. Moreover, several of the six filament-forming mutant variants deviated considerably from wild-type desmin with respect to their filament diameters and mass-per-length values. In the heteropolymeric situation with wild-type desmin, four of the mutant variants caused a pronounced "hyper-assembly", when assayed by viscometry. This indicates that the various mutations may cause abortion of filament formation by the mutant protein at distinct stages, and that some of them interfere severely with the assembly of wild-type desmin. Taken together, our findings provide novel insights into the basic intermediate filament assembly mechanisms and offer clues as to how amino acid changes within the desmin rod domain may interfere with the normal structural organization of the muscle cytoskeleton, eventually leading to desminopathy.
Keywords:IF  intermediate filament  STEM  scanning transmission electron microscopy  ULF  unit-length filament  MPL  mass per length  FWHM  full width at half maximum mass
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号