首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The rhizosphere signal molecule lumichrome alters seedling development in both legumes and cereals
Authors:Matiru Viviene N  Dakora Felix D
Institution:Botany Department, University of Cape Town, Private Bag, Rondebosch 7701, South Africa.
Abstract:The stimulatory role of lumichrome, a rhizosphere metabolite, was assessed on the growth of legume and cereal seedlings. At a very low nanomolar concentration (5 nm), lumichrome elicited growth promotion in cowpea, soybean, sorghum, millet and maize, but not in common bean, Bambara groundnut and Sudan grass. In soybean and cowpea only, 5 nm lumichrome caused early initiation of trifoliate leaf development, expansion in unifoliate and trifoliate leaves, increased stem elongation and, as a result, an increase in shoot and plant total biomass relative to control. Lumichrome (5 nm) also increased leaf area in maize and sorghum, and thus raised shoot and total biomass but there was no effect on the leaf area of the other cereals. Root growth was also stimulated in sorghum and millet by the supply of 5 nm lumichrome. By contrast, the application of a higher dose of lumichrome (50 nm) depressed development of unifoliate leaves in soybean, the second trifoliate leaf in cowpea, and shoot biomass in soybean. The 50 nm concentration also consistently decreased root development in cowpea and millet, but had no effect on the other species. These data show that lumichrome is a rhizosphere signal molecule that affects seedling development in both monocots and dicots.
Keywords:cereals  legumes  lumichrome  plant development  rhizosphere signal molecule
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号