首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Synthesis Paradigm in Genetics
Authors:William R Rice
Institution:Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106
Abstract:Experimental genetics with model organisms and mathematically explicit genetic theory are generally considered to be the major paradigms by which progress in genetics is achieved. Here I argue that this view is incomplete and that pivotal advances in genetics—and other fields of biology—are also made by synthesizing disparate threads of extant information rather than generating new information from experiments or formal theory. Because of the explosive expansion of information in numerous “-omics” data banks, and the fragmentation of genetics into numerous subdisciplines, the importance of the synthesis paradigm will likely expand with time.MAJOR advances in the field of genetics have been developed on a foundation supported by three major pillars (i.e., paradigms, by which I mean a framework of basic assumptions, logical approaches, and methodologies), two of which are widely known and appreciated while the third is rarely even acknowledged. The first major paradigm is experimental genetics, especially in the context of model organisms. The work of Thomas H. Morgan and his colleagues at Cal Tech during the early 20th century is a classic example of this approach. A succession of elegant experimental studies by this research team led to the development of the Drosophila melanogaster model system, which Morgan et al. (1915) used to construct the first genomic map that included genes assigned to precise locations on all of an organism’s chromosomes. Their accumulated experimental results also contributed importantly to their book, The Mechanism of Mendelian Heredity (1915), which many consider to be the catalyst that launched the modern era of genetics.The second paradigm is mathematically explicit genetic theory. The succession of genetical theory papers published throughout the first half of the 20th century by Ronald A. Fisher is a classic example of this approach. Fisher’s work reconciled a fundamental rift in the early history of modern genetics—i.e., the genetic approaches of the Mendelians (advocated by William Bateson and Hugo de Vries) vs. the Galtonians (also known as the biometricians, represented in particular by Karl Pearson and Walter F. Weldon)—by showing that Mendelian particulate inheritance could be unified with the quantitative genetics used to analyze continuously varying traits such as height and weight (Fisher 1918). Although Darwin developed the basic framework of evolution, it was Fisher—and contemporary theoreticians Sewall Wright and J. B. S. Haldane—who integrated this qualitative idea into a quantitatively explicit genetic theory that led to the modern synthesis of evolution and launched the field of evolutionary genetics (also known as population genetics and summarized in Fisher’s now classic book, The Genetical Theory of Natural Selection, first published in 1930). Of course, some theory in genetics is not mathematically explicit, such as the “chromosomal theory of inheritance” or the “central dogma.” But this form of theory usually represents the culmination of studies using the experimental genetics paradigm rather than a unique approach to genetics.Most major advances in genetics have been achieved via one, the other, or a combination of these experimental and theoretical paradigms. But there is a well-known exception: Watson and Crick’s discovery of the structure of DNA (Watson and Crick 1953a,b, ∼11,000 combined citations—throughout, numbers of citations are taken from Google Scholar—, and arguably the pivotal publications that launched the modern field of molecular genetics). Watson and Crick used no mathematical genetic theory, nor did they do any critical experiments; instead, they integrated many threads of established information (some unpublished) to deduce the chemical structure of the hereditary material, i.e., the DNA double helix and how this structure could explain gene replication. Although later experiments, such as those of Meselson and Stahl (1958) on DNA replication, would ultimately confirm the deduced structure and replication of DNA that was proposed by Watson and Crick, the pivotal publications of these researchers used neither the experimental nor the theory paradigms of genetics. Their approach exemplifies what I will call the “synthesis paradigm.” Watson and Crick’s work demonstrates that there is actually a trichotomy of approaches—the experimental, theoretical-mathematical, and theoretical-synthetic approaches—that combine like interwoven, reinforcing strands in a cord of historical advances in genetics.In the next few sections I describe other instances in which the synthesis paradigm has been of critical importance in the field of genetics. This set of examples is meant to be illustrative and by no means exhaustive. Next I illustrate how the synthesis paradigm has been of critical importance in other fields of biology. Finally, I describe how a fuller appreciation of the synthesis paradigm can influence the training of the next cohort of geneticists and the career trajectory of current geneticists.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号