首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The biogeography and phylogeny of schizothoracine fishes (Schizopygopsis) in the Qinghai‐Tibetan Plateau
Authors:Delin Qi  Songchang Guo  Yan Chao  Qinghui Kong  Changzhong Li  Mingzhe Xia  Baosheng Xie  Kai Zhao
Institution:1. Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, China;2. Key laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China;3. College of Eco‐Environmental Engineering, Qinghai University, Xining, China
Abstract:Freshwater fish belonging to the genus Schizopygopsis are widespread in drainages throughout the Qinghai‐Tibetan Plateau and, thus, a model group with which to investigate how paleo‐drainage changes linked to historical uplifting within the Qinghai‐Tibetan Plateau influence speciation. To date, the phylogenetic and taxonomic relationships within Schizopygopsis remain controversial. In this study, we constructed a comprehensive molecular phylogeny of Schizopygopsis based on six mitochondrial gene sequences. We compared the taxonomic relationships revealed by this phylogeny with those obtained from morphological data. We also used this phylogeny to assess the extent to which the evolution of Schizopygopsis has been driven by paleo‐drainage changes linked to uplifting of the Qinghai‐Tibetan Plateau. Results indicated that all Schizopygopsis taxa formed a monophyletic group comprising five major clades, which were inconsistent with the taxonomic relationships based on morphology for this group. Our results also strongly supported the validity of S. anteroventris and S. microcephalus as distinct species within Schizopygopsis. Molecular calibrations showed that species within the middle Yangtze species diverged earlier (~4.5 Mya) than species within the Indus River (~3.0 Mya), the Mekong River (~2.8 Mya) and the Tsangpo + Salween rivers (~2.5 Mya). The most recent evolutionary splits occurred among species from the upper and lower Yangtze River, the Yellow River and the Qiadam Basin at about 1.8 to 0.3 Mya. Our molecular evidence and use of the molecular clock calibration have allowed us to associate speciation events within the genus Schizopygopsis to the formation and separation of paleo‐drainage connections caused by tectonic events during the uplifting of the Qinghai‐Tibetan Plateau (~4.5 Mya). This work underlines the dominant role of vicariance in shaping the evolutionary history of the genus Schizopygopsis. Further research using multiple loci and more extensive sampling will reveal a more complete picture of the phylogenetic relationships and biogeography of Schizopygopsis fishes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号