首页 | 本学科首页   官方微博 | 高级检索  
   检索      


WAVELENGTH DEPENDENCY OF THE MAXIMUM QUANTUM YIELD OF CARBON FIXATION FOR TWO RED TIDE DINOFLAGELLATES,HETEROCAPSA PYGMAEA AND PROROCENTRUM MINIMUM (PYRROPHYTA): IMPLICATIONS FOR MEASURING PHOTOSYNTHETIC RATES1
Authors:Oscar Schofield  Barbara Przelin  Geir Johnsen
Institution:Oscar Schofield,Barbara Prézelin,Geir Johnsen
Abstract:The influence of photoadaptive state on the spectral dependency of the maximum quantum yield for carbon fixation was determined for two red tide dinoflagellates, Heterocapsa pygmaea Loeblich, Schmidt, et Sherley and Prorocentrum minimum Pavillard. Cultures were acclimated to green, blue, red, and white light. The spectral dependency in the light-limited slope of the photosynthesis–irradiance curves (α) was measured with carbon action spectra that, when divided by the spectrally weighted absorption coefficient, provided estimates of the maximum quantum yield (φmax) for carbon fixation. Values of φmax varied with wavelength within each culture condition as well as between different culture conditions. The degree to which the spectral dependency in φmax was influenced by the presence of photoprotective carotenoids and/or energy imbalances between photosystems I and II was assessed for both dinoflagellates. The impact of photoprotective pigmentation on the spectral dependency of φmax was most significant for cells grown under high light conditions reflecting the enrichment of diadinoxanthin. Energy imbalances between the photosystems was assessed by quantifying enhancement effects on spectral φmax in the presence of background illumination. Under our experimental conditions, enhancement effects on carbon action spectra were evident for H. pygmaea under nearly all growth conditions but were not detectable for P. minimum under any growth condition. We hypothesize that sensitivity to enhancement effects reflected differences in the structure of the photosynthetic machinery of these two peridinin-containing dinoflagellates. While measurements of φmax are sensitive to the color of the light within an incubator, the relative impact on the spectral dependency of a was less than the wavelength dependency associated with the cellular absorption properties. Finally we used our data to validate an approach proposed by others to aid in the correction of photosynthetic measurements where the in situ spectral light field cannot be easily mimicked. The average error using this approach was 8%, which was significantly less than the error associated with ignoring the spectral dependency in α.
Keywords:action spectra  chromatic adaptation  Heterocapsa pygmaea  photosynthesis  Prorocentrum minimum  Pyrrophyta  quantum yield
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号