首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparison of the thermostability of recombinant luciferases from Brazilian bioluminescent beetles: Relationship with kinetics and bioluminescence colours
Authors:Gabriela Oliveira  Vadim R Viviani
Institution:1. Laboratory of Biochemistry and Biotechnology of Bioluminescence, Graduate Program of Biotechnology and Environmental Monitoring, Department of Chemistry, Physics and Mathematics, Federal University of S?o Carlos (UFSCar), Sorocaba, SP, Brazil;2. Department of Evolutive Genetics and Molecular Biology, Federal University of S?o Carlos (UFSCar), S?o Carlos, SP, Brazil
Abstract:Firefly luciferases have been used extensively as bioanalytical reagents and their cDNAs as reporter genes for biosensors and bioimaging, but they are in general unstable at temperatures above 30°C. In the past few years, efforts have been made to stabilize some firefly luciferases for better application as analytical reagents. Novel luciferases from different beetle families, displaying distinct bioluminescence colours and kinetics, may offer desirable alternatives to extend the range of applications. In the past years, our group has cloned the largest variety of luciferases from the three main families of bioluminescent beetles (Elateridae: P. termitilluminans, F. bruchi, P. angustus; Phengodidae: P. hirtus, P. vivianii; and Lampyridae: A. vivianii, C. distinctus and Macrolampis sp2) occurring in Brazilian biomes. We compared the thermostability of these recombinant luciferases and investigated their relationships with bioluminescence spectra and kinetics. The most thermostable luciferases were those of Pyrearinus termitilluminans larval click beetle (534 nm), Amydetes vivianii firefly (539 nm) and Phrixotrix vivianii railroad worm (546 nm), which are the most blue‐shifted examples in each family, confirming the trend that the most blue‐shifted emitting luciferases are also the most thermostable. Comparatively, commercial P. pyralis firefly luciferase was less thermostable than P. termitilluminans click beetle and A. vivianii firefly luciferases. The higher thermostability in these luciferases could be related to higher degree of hydrophobic packing and disulfide bond content (for firefly luciferases).
Keywords:bioluminescence  Elateroidea  luciferase  thermostability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号