首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Down-Regulation of miRNA-30a Alleviates Cerebral Ischemic Injury Through Enhancing Beclin 1-Mediated Autophagy
Authors:Peng Wang  Jia Liang  Yun Li  Jiefei Li  Xuan Yang  Xinxin Zhang  Song Han  Shujuan Li  Junfa Li
Institution:1. Department of Neurobiology, Beijing Institute for Brain Disorders, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People’s Republic of China
2. Central Laboratory, Liaoning Medical University, Jinzhou, 121000, People’s Republic of China
3. Department of Neurology, Capital Medical University Affiliated Beijing Chao-Yang Hospital, Beijing, 100020, People’s Republic of China
Abstract:The understanding of molecular mechanism underlying ischemia/reperfusion-induced neuronal death and neurological dysfunction may provide therapeutic targets for ischemic stroke. The up-regulated miRNA-30a among our previous identified 19 MicroRNAs (miRNAs) in mouse brain after 6 h middle cerebral artery occlusion (MCAO) could negatively regulate Beclin 1 messenger RNA (mRNA) resulting in decreased autophagic activity in tumor cells and cardiomyocytes, but its role in ischemic stroke is unclear. In this study, the effects of miRNA-30a on ischemic injury in N2A cells and cultured cortical neurons after oxygen glucose deprivation (OGD), and mouse brain with MCAO-induced ischemic stroke were evaluated. The results showed that miRNA-30a expression levels were up regulated in the brain of mice after 6 h MCAO without reperfusion, but significantly down regulated in the peri-infarct region of mice with 1 h MCAO/24 h reperfusion and in N2A cells after 1 h OGD/6–48 h reoxygenation. Both the conversion ratio of microtubule-associated protein 1 light chain 3 (LC3)-II/LC3-I and Beclin 1 protein level increased in N2A cells and cultured cortical neurons following 1 h OGD/24 h reoxygenation. The down-regulated miRNA-30a could attenuate 1 h OGD/24 h reoxygenation-induced ischemic injury in N2A cells and cultured cortical neurons through enhancing Beclin 1-mediated autophagy, as miRNA-30a recognized the 3′-untranslated region of beclin 1 mRNA to negatively regulate Beclin 1-protein level via promoting beclin 1 messenger RNA (mRNA) degradation, and Beclin 1 siRNA abolished anti-miR-30a-induced neuroprotection in 1 h OGD/24 h reoxygenation treated N2A cells. In addition, anti-miR-30a attenuated the neural cell loss and improved behavioral outcome of mice with ischemic stroke. These results suggested that down-regulation of miRNA-30a alleviates ischemic injury through enhancing beclin 1-mediated autophagy, providing a potential therapeutic target for ischemic stroke.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号