首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Celastrol from ‘Thunder God Vine’ Protects SH-SY5Y Cells Through the Preservation of Mitochondrial Function and Inhibition of p38 MAPK in a Rotenone Model of Parkinson’s Disease
Authors:Bong-Suk Choi  Hyool Kim  Hyo Jeong Lee  Kumar Sapkota  Se Eun Park  Seung Kim  Sung-Jun Kim
Institution:1. Department of Biotechnology, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea
4. Jangheung Research Institute for Mushroom Industry, Jangheung, 529-851, Republic of Korea
2. Department of Neurosurgery, Chonnam National University Hospital, Gwangju, 501-757, Republic of Korea
3. Department of Alternative Medicine, Gwangju University, Gwangju, 503-703, Republic of Korea
5. Central Department of Zoology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
Abstract:Celastrol, a potent natural triterpene and one of the most promising medicinal molecules, is known to possess a broad range of biological activity. Rotenone, a pesticide and complex I inhibitor, is commonly used to produce experimental models of Parkinson’s disease both in vivo and in vitro. The present study was designed to examine the effects of celastrol on cell injury induced by rotenone in the human dopaminergic cells and to elucidate the possible mechanistic clues in its neuroprotective action. We demonstrate that celastrol protects SH-SY5Y cells from rotenone-induced cellular injury and apoptotic cell death. Celastrol also prevented the increased generation of reactive oxygen species and mitochondrial membrane potential (ΔΨm) loss induced by rotenone. Similarly, celastrol treatment inhibited cytochrome c release, Bax/Bcl-2 ratio changes, and caspase-9/3 activation. Celastrol specifically inhibited rotenone-evoked p38 mitogen-activated protein kinase activation in SH-SY5Y cells. These data suggest that celastrol may serve as a potent agent for prevention of neurotoxin-induced neurodegeneration through multiple mechanisms and thus has therapeutic potential for the treatment of neurodegenerative diseases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号