首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pressure inactivation of tetrameric lactate dehydrogenase homologues of confamilial deep-living fishes
Authors:John P Hennessey Jr  Joseph F Siebenaller
Institution:(1) College of Oceanography, Oregon State University Marine Science Center, 97365 Newport, Oregon, USA;(2) Present address: Department of Zoology and Physiology, Louisiana State University, 70803 Baton Rouge, Louisiana, USA
Abstract:Summary The susceptibility to inactivation by hydrostatic pressure of the tetrameric (Fig. 1) muscletype (M4) lactate dehydrogenase homologues (LDH, EC 1.1.1.27;l-lactate: NAD+ oxidoreductase) from six confamilial macrourid fishes was compared at 4 °C. These marine teleost fishes occur over depths of 260 to 4815 m. The pressures necessary to half-inactivate the LDH homologues are related to the pressures which the enzymes are exposed to in vivo (Table 1); higher hydrostatic pressures are required to inactivate the LDH homologues of the deeper-occurring macrourids. The resistance of the LDH homologues to inactivation by pressure is affected by protein concentration (Fig. 3). After an hour of incubation at pressure, the percent remaining activity approaches an asymptotic value (Fig. 2). The inactivation of the macrourid LDH homologues by pressure was not fully reversible. Assuming that inactivation by pressure was due to dissociation of the native tetramer to monomers, apparent equilibrium constants (K eq) were calculated. Volume changes (DeltaV) were calculated over the range of pressures for which plots inK eq versus pressure were linear (Fig. 4). The DeltaV of dissociation values of the macrourid homologues range from –219 to –439 ml mol–1 (Table 1). Although the hydrostatic pressures required to inactivate the LDH homologues of the macrourid fishes are greater than those which the enzymes are exposed to in vivo, the pressure-stability of these enzymes may reflect the resistance of these enzymes to pressure-enhanced proteolysis in vivo.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号