首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Water chemistry changes in the gill micro-environment of rainbow trout: experimental observations and theory
Authors:Richard C Playle  Chris M Wood
Institution:(1) Department of Biology, McMaster University, L8S 4K1 Hamilton, Ontario, Canada
Abstract:Summary Soft water of low buffer capacity was drawn from near the branchial surface of rainbow trout (Salmo gairdneri) at 15°C, using opercular catheters, to determine pH changes in water passing over the gills. Latex masks allowed measurement of ventilation volume, and concentrations of carbon dioxide, oxygen, ammonia, and titratable base in expired water were compared to concentrations in inspired water. Water passing over the gills was more basic than inspired water if the inspired water was pH 4–6 (maximum increase: +0.7 pH units near pH 5). Expired water was more acidic than inspired water if the inspired water was pH 6–10 (maximum decrease: –1.7 pH units near pH 9). Ventilation volume (sim0.37 l·kg–1·min–1) and oxygen consumption (sim1.7 mmol·kg–1·h–1) were constant in the pH range 4.6–10.1, but both increased by 1.6–2.4× near pH 4. Carbon dioxide transfer near the gills was about 100 mgrM, ammonia transfer about 15 mgrM, and titratable base added at the gills was about 30 mgrM. A theoretical model using CO2, titratable base, and ammonia added at the gills, the titration characteristics of the defined soft water medium, and aquatic equilibria for CO2 and ammonia, adequately explained the experimentally observed changes in pH near trout gills. Our observations and predictive model indicate that any gill contaminant whose toxicity varies with pH may be more or less toxic at the gills than predicted from bulk water chemistry alone.Abbreviations pH ex expired pH - pH in inspired pH
Keywords:Trout  Gills  pH  Water chemistry  Model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号