首页 | 本学科首页   官方微博 | 高级检索  
   检索      


P2Y1 receptor-mediated glutamate release from cultured dorsal spinal cord astrocytes
Authors:Zeng Jun-Wei  Liu Xiao-Hong  Zhang Jin-Hai  Wu Xi-Gui  Ruan Huai-Zhen
Institution:Department of Neurobiology, Third Military Medical University, Chongqing, China
Abstract:P2 receptors have been implicated in the release of neurotransmitter and proinflammatory cytokines by the response to neuroexcitatory substances in astrocytes. In the present study, we examined the mechanisms of ADP and adenosine 5'-O-2-thiodiphosphate (ADPbetaS, ADP analogue) on glutamate release from cultured dorsal spinal cord astrocytes by using confocal laser scanning microscopy and HPLC. Immunofluorescence activity showed that P2Y1 receptor protein is expressed in cultured astrocytes. ADP and ADPbetaS-induced Ca2+]i increase and glutamate release are mediated by P2Y1 receptor. Ca2+ release from IP3-sensitive calcium stores and protein kinase C (PKC) activation is important for glutamate release from astrocytes. Furthermore, P2Y1 receptor-evoked glutamate release is regulated by volume-sensitive Cl? channels and anion co-transporter, which open up the possibility that P2Y1 receptor activation causes the increase of cell volume. Release of glutamate by ADPbetaS was abolished by 5-nitro-2 (3-phenyl propy lamino)–benzoate plus furosemide but was unaffected by botulinum toxin A. These observations indicate that P2Y1 receptor-evoked glutamate may be mediated via volume-sensitive Cl? channel but not via exocytosis of glutamate containing vesicles. We speculate that P2Y1 receptors-evoked glutamate efflux, occurring under pathological condition, may modulate the activity of synapses in spinal cord.
Keywords:astrocyte  Ca2+  glutamate release  P2Y1 receptor  spinal cord
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号