首页 | 本学科首页   官方微博 | 高级检索  
   检索      

微卫星标记对WHBE兔封闭群、日本大耳白兔和新西兰兔的遗传分析
引用本文:陈民利,蔡月琴,陶涛,余佳,肖慧,朱亮,徐孝平,王德军,应华忠.微卫星标记对WHBE兔封闭群、日本大耳白兔和新西兰兔的遗传分析[J].中国实验动物学杂志,2008(9):21-27.
作者姓名:陈民利  蔡月琴  陶涛  余佳  肖慧  朱亮  徐孝平  王德军  应华忠
作者单位:浙江中医药大学动物实验研究中心比较医学研究中心,杭州310053
基金项目:国家自然科学基金项目(编号:30770322);2.浙江省卫生高层次创新人才培养工程项目.
摘    要:目的分析比较大耳白黑眼兔(WHBE兔)封闭群与日本大耳白兔(Jw兔)、新西兰兔(NZW兔)基因组存在的微卫星结构,研究WHBE兔封闭群的微卫星多态性。方法利用21个微卫星位点,通过微卫星分子标记技术对WHBE兔封闭群、Jw兔和NZW兔进行遗传多样性检测和对比。结果根据初步结果,在21对微卫星引物中筛选出扩增产物稳定并且具有多态性的11对引物。WHBE兔封闭群在每个位点上的等位基因数为3~8个不等,11个位点的平均有效等位基因数为2.0402个,平均杂合度为0.4810;Jw兔在每个位点上的等位基因数为2~8个不等,11个位点的平均有效等位基因数为3.6077个,平均杂合度为0.5039;NZW兔在每个位点上的等位基因数为3~9个不等,11个位点的平均有效等位基因数为2.6537个,平均杂合度为0.5334。WHBE兔封闭群在11个微卫星位点上的平均多态信息含量(PIC)为0.6005,多位点累积个体识别率达到100%,多位点累积非父排除概率(CPE)在双亲信息都是未知情况下的为0.9613,而在得知任一亲本信息的情况下,CPE值高达0.9973。在11个微卫星座位中,9个位点上出现了WHBE兔封闭群特有等位基因,其中在Sat2、Sat5、Sat7、Sat12、Sat13、Sat16、S0144和INRACCDDV0003八个位点上WHBE兔封闭群的特有等位基因为一个,在sat8位点上为两个。结论WHBE兔8个位点的平均杂合度、平均有效等位基因数均比JW兔及NZW兔低,说明WHBE兔群体的基因纯合度高于其他两个品系,具有更优的遗传稳定性。9个WHBE兔特有的等位基因可作为区分WHBE兔封闭群和其它两个品系实验兔的分子标记。

关 键 词:WHBE兔封闭群  日本大耳白兔  新西兰兔  微卫星DNA  多态性

Genetic Analysis of WHBE Rabbit,Japanese Rabbit and New Zealand Rabbit by Microsatellite Loci
CHEN Min-li,CAI Y ue-qin,TAO Tao,YU Jia,XIAO Hui,ZHU Liang XU Xiao-ping,WANG De-jun,YING Hua-zhong.Genetic Analysis of WHBE Rabbit,Japanese Rabbit and New Zealand Rabbit by Microsatellite Loci[J].Chinese Journal of Laboratory Animal Science,2008(9):21-27.
Authors:CHEN Min-li  CAI Y ue-qin  TAO Tao  YU Jia  XIAO Hui  ZHU Liang XU Xiao-ping  WANG De-jun  YING Hua-zhong
Institution:(Zhejiang Chinese Medical University Laboratory Animal Research Center, Hangzhou 310053, China)
Abstract:Objective To assess and verify the identity of 3 strains of laboratory rabbit population on molecular level, polymorphism of microsatellite loci of WHBE rabbit genome were analysed. Methods 21 microsatellite loci of rabbit were used to analyze and compare the genetic polymorphism among 3 strains of laboratory rabbit population. Results 11 microsatellite loci which were successfully amplified with high polymorphism were selected in 21 microsatellite loci. For the WHBE rabbit population, the number of alleles ranged from 3 to 8 ; the average number of effective alleles was 2.0402 and the average observed heterozygosity was 0.4810. For the Japanese White rabbit population, the number of alleles ranged from 2 to 8, the average number of effective alleles was 3.6077 and the average observed heterozygosity was O. 5039. For the New Zealand rabbit population, the number of alleles ranged from 3 to 9, the average number of effective alleles was 2.6537 and the average observed betemzygosity was 0.5334. In WHBE rabbit population, the average value of polymorphism information content or the power of cumulative discrimination for the 11 polymorphic loci was O. 6005 and 1.0, respectively. The average exclusion probability for the 11 polymorphic loci in the absence or in the presence of genetic information on the first parent was 0. 9613 and 0.9973, respectively. 10 alleles in 9 microsatellite loci (Sat2, SatS, Sat7, Sat8, Satl2, Satl3, Satl6, So144 and INRACCDDV0003) were specific in WHBE rabbit compared with the other two strains. Conclusion The average number of effective alleles and the average observed betemzygosity of WHBE rabbit were lower than those of Japanese White rabbit and New Zealand rabbit. It showed that the purity of gene in WHBE rabbit was higher than those in the other two strains. 10 alleles in 9 loci were to be the markers to specify the strain of WHBE rabbit.
Keywords:WHBE rabbit  Japanese White rabbit  New Zealand White rabbit  MicrosateUite Separation  Polymorphism Analysis
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号