首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Designing a Non-invasive Surface Acoustic Resonator for Ultra-high Sensitive Ethanol Detection for an On-the-spot Health Monitoring System
Authors:Peyman Jahanshahi  Qin Wei  Zhang Jie  Erfan Zalnezhad
Institution:1.Institute of Intelligent Manufacturing and Information Engineering, School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai,China;2.Department of Mechanical Convergence Engineering,Hanyang University,Seoul,Korea
Abstract:Surface acoustic wave (SAW) sensors–based on piezoelectric crystal resonators–are extremely sensitive to even very small perturbations in the external atmosphere, because the energy associated with the acoustic waves is confined to the crystal surface. In this study, we present a critical review of the recent researches and developments predominantly used for SAW-based organic vapor sensors, especially ethanol. Besides highlighting their potential to realize real-time ethanol sensing, their drawbacks such as indirect sensing, invasive, time initializing, and low reliability, are properly discussed. The study investigates a proposed YZ-lithium niobate piezoelectric substrate with interdigital transducers patterned on the surface. Design of the resonator plays an important role in improving mass sensitivity, particularly the sensing area. Accordingly, a tin dioxide (SnO2) layer with a specific thickness is generated on the surface of the sensor because of its high affinity to ethanol molecules. To determine the values of sensor configuration without facing the practical problems and the long theoretical calculation time, it is shown that the mass sensitivity of SAW sensors can be calculated by a simple three-dimensional (3-D) finite element analysis (FEA) using a commercial finite-element platform. In design validation step, different concentrations of ethanol are applied to investigate the acoustic wave properties of the sensor. The FEA data are used to obtain the surface and bulk total displacements of the sensor and fast Fourier transform (FFT) on output spectrum. The sensor could develop into highly sensitive and fast responsive structure so that a positive intensity shift of 0.18e-2 RIU is observed when the sensor is exposed to 15 ppm ethanol. It is capable of continuously monitoring the ethanol gas whether as an ultra-high sensitive sensor or switching applications for medical and industrial purposes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号