首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A simple method for the simulation of steady-state diffusion through membranes: pressure-tuned,boundary-driven molecular dynamics
Authors:Zoltán Ható  Ákos Kaviczki
Institution:Department of Physical Chemistry, Institute of Chemistry, University of Pannonia, PO Box 158, H-8201, Veszprém, Hungary
Abstract:We present a novel molecular dynamics-based simulation technique for investigating gas transport through membranes. In our simulations, the main control parameters are the partial pressure for the components on the input side of the membrane and the total pressure on the output side. The essential point of our scheme is that this pressure control should be realised by adjusting the particle numbers in the input and output side control cells indirectly. Although this perturbation is applied sufficiently far from the membrane, the bulk-phase properties are well controlled in a simulation cell of common size. Numerical results are given for silicalite-1 membrane with permeating CH4, CO2, H2 and N2 gases as well as with binary mixtures of CO2 with the other three components. To describe interactions between particles, we used the simple shifted and cut Lennard–Jones potential with parameters available in the literature. It is expected that the proposed technique can be applied to several other types of membranes and transported fluids in order to support the development of a deeper understanding of separation processes.
Keywords:molecular dynamics  steady state  silicalite membrane  gas permeation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号