首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Approaching the Minimum Thermal Conductivity in Rhenium‐Substituted Higher Manganese Silicides
Authors:Xi Chen  Steven N Girard  Fei Meng  Edgar Lara‐Curzio  Song Jin  John B Goodenough  Jianshi Zhou  Li Shi
Institution:1. Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA;2. Department of Chemistry, University of Wisconsin ? Madison, Madison, WI, USA;3. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Abstract:Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50?200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.
Keywords:alloys  thermoelectric materials  thermal conductivity  nanostructures  silicides
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号